92 resultados para Force balance system


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Pós-graduação em Engenharia Elétrica - FEIS

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The aim of this study was to use the finite element method to evaluate the distribution of stresses and strains on the local bone tissue adjacent to the miniplate used for anchorage of orthodontic forces. Methods: A 3-dimensional model composed of a hemimandible and teeth was constructed using dental computed tomographic images, in which we assembled a miniplate with fixation screws. The uprighting and mesial movements of the mandibular second molar that was anchored with the miniplate were simulated. The miniplate was loaded with horizontal forces of 2, 5, and 15 N. A moment of 11.77 N.mm was also applied. The stress and strain distributions were analyzed, and their correlations with the bone remodeling criteria and miniplate stability were assessed. Results: When orthodontic loads were applied, peak bone strain remained within the range of bone homeostasis (100-1500 mu m strain) with a balance between bone formation and resorption. The maximum deformation was found to be 1035 mu m strain with a force of 5 N. At a force of 15 N, bone resorption was observed in the region of the screws. Conclusions: We observed more stress concentration around the screws than in the cancellous bone. The levels of stress and strain increased when the force was increased but remained within physiologic levels. The anchorage system of miniplate and screws could withstand the orthodontic forces, which did not affect the stability of the miniplate.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Pós-graduação em Agronomia (Ciência do Solo) - FCAV

Relevância:

30.00% 30.00%

Publicador:

Resumo:

[Purpose] Sit-to-walk performance is linked to proper proprioceptive information processing. Therefore, it is believed that an increase of proprioceptive inflow (using muscle vibration) might improve sit-to-walk performance. However, before testing muscle vibration effects on a frail population, assessment of its effects on healthy young people is necessary. Thus, the aim of this study was to investigate the effects of muscle vibration on sit-to-walk performance in healthy young adults. [Subjects and Methods] Fifteen young adults performed the sit-to-walk task under three conditions: without vibration, with vibration applied before movement onset, and with vibration applied during the movement. Vibration was applied bilaterally for 30 s to the tibialis anterior, rectus femoris, and upper trapezius muscles bellies. The vibration parameters were as follows: 120 Hz and 1.2 mm. Kinematics and kinetic data were assessed using a 3D motion capture system and two force plates. The coordinates of reflective markers were used to define the center-of-mass velocities and displacements. In addition, the first step spatiotemporal variables were assessed. [Results] No vibration effect was observed on any dependent variables. [Conclusion] The results show that stimulation of the proprioceptive system with local muscle vibration does not improve sit-towalk performance in healthy young adults.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

An excitation force that is not influenced by the system's states is said to be an ideal energy source. In real situations, a direct and feedback coupling between the excitation source and the system must always exist. This manifestation of the law of conversation of energy is known as Sommerfeld Effect. In the case of obtaining a mathematical model for such system, additional equations are usually necessary to describe the vibration sources and their coupling with the mechanical system. In this work, a cantilever beam and a non-ideal electric DC motor that is fixed to the beam free end is analyzed. The motor has an unbalanced mass that provides excitation to the system proportional to the current applied to the motor. During the motor's coast up operation, as the excitation frequency gets closer to the beam first natural frequency and if the drive power increases further, the DC motor speed remains constant until it suddenly jumps to a much higher value (simultaneously the vibration amplitude jumps to a much lower value) upon exceeding a critical input power. It was found that the Sommerfeld effect depends on some system parameters and the motor operational procedures. These parameters are explored to avoid the resonance capture in Sommerfeld effect. Numerical simulations and experimental tests are used to help insight this dynamic behavior.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Ciêntífico e Tecnológico (CNPq)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Pós-graduação em Desenvolvimento Humano e Tecnologias - IBRC

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Pós-graduação em Engenharia Elétrica - FEIS

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)