115 resultados para Feynman integrals


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Some postulates are introduced to go from the classical Hamilton-Jacobi theory to the quantum one. We develop two approaches in order to calculate propagators, establishing the connection between them and showing the equivalence of this picture with more known ones such as the Schrödinger's and the Feynman's formalisms. Applications of the above-mentioned approaches to both the standard case of the harmonic oscillator and to the harmonic oscillator with time-dependent parameters are made. © 1991 Plenum Publishing Corporation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The theory of vibronic transitions in rare earth compounds is re-examined in the light of a more reliable representation for the ligand field Hamiltonian than the crude electrostatic model. General expressions that take into account the relevant contributions from the forced electric dipole and dynamic coupling mechanisms are derived for the vibronic intensity parameters. These include additional terms, from charge and polarizability gradients, which have not been considered in previous work. Emphasis is given to the relative signs of these various contributions. Under certain approximations these expressions may be conveniently written in terms of accessible ligand field parameters. A comparison with experimental values for the compounds Cs2NaEuCl6 and LiEuF4 is made and satisfactory agreement between theory and experiment is found. A discussion is given on the sensitivity of the calculated intensities to the values of radial integrals, interconfigurational energy differences and ligand field parameters that may be used. Finally, the problem in which a vibronic and an electronic level are in resonance, or near resonance, is analyzed. Suitable expressions to describe the effects of the even-rank components of the vibronic Hamiltonian are obtained. It is found that, depending on the strength of the vibronic interaction and the resonance conditions, the admixture between these two levels may lead to intensities of nearly equal values. © 1995.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We reexamine the two-point function approaches used to study vacuum fluctuation in wedge-shaped regions and conical backgrounds. The appearance of divergent integrals is discussed and circumvented. The issue is considered in the context of a massless scalar field in cosmic string spacetime.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Regge-Mueller formalism is used to describe the inclusive spectrum of the proton in pp collisions. From such a description the energy dependences of both average inelasticity and leading proton multiplicity are calculated. These quantities are then used to establish the connection between the average charged particle multiplicities measured in e+e- and pp/p̄p processes. The description obtained for the leading proton cross section implies that Feynman scaling is strongly violated only at the extreme values of xF, that is at the central region (xF≈0) and at the diffraction region (XF≈1), while it is approximately observed in the intermediate region of the spectrum. ©1999 The American Physical Society.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We investigate the effect of different forms of relativistic spin coupling of constituent quarks in the nucleon electromagnetic form factors. The four-dimensional integrations in the two-loop Feynman diagram are reduced to the null-plane, such that the light-front wave function is introduced in the computation of the form factors. The neutron charge form factor is very sensitive to different choices of spin coupling schemes, once its magnetic moment is fitted to the experimental value. The scalar coupling between two quarks is preferred by the neutron data, when a reasonable fit of the proton magnetic momentum is found. (C) 2000 Elsevier Science B.V.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The soft stadium is defined by a monomial potential with exponent α as a parameter, such that α → ∞ corresponds to the billiard. The practical use of the quantum section method depends only on the partial separability of the system on both sides of the section, which holds for all α's. In particular, for α = 1.0, the system becomes globally separable, allowing for a general test of the method. For various values of the parameter, we also tested the use of the asymptotic WKB-type approximation in the construction of Green's functions and asymptotic overlap integrals to obtain higher energy eigenvalues. We show these approximations to be reliable. © 2000 Elsevier Science B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The purpose of this paper is to show certain links between univariate interpolation by algebraic polynomials and the representation of polyharmonic functions. This allows us to construct cubature formulae for multivariate functions having highest order of precision with respect to the class of polyharmonic functions. We obtain a Gauss type cubature formula that uses ℳ values of linear functional (integrals over hyperspheres) and is exact for all 2ℳ-harmonic functions, and consequently, for all algebraic polynomials of n variables of degree 4ℳ - 1.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Gauge fields in the light front are traditionally addressed via, the employment of an algebraic condition n·A = 0 in the Lagrangian density, where Aμ is the gauge field (Abelian or non-Abelian) and nμ is the external, light-like, constant vector which defines the gauge proper. However, this condition though necessary is not sufficient to fix the gauge completely; there still remains a residual gauge freedom that must be addressed appropriately. To do this, we need to define the condition (n·A) (∂·A) = 0 with n·A = 0 = ∂·A. The implementation of this condition in the theory gives rise to a gauge boson propagator (in momentum space) leading to conspicuous nonlocal singularities of the type (k·n)-α where α = 1, 2. These singularities must be conveniently treated, and by convenient we mean not only mathemathically well-defined but physically sound and meaningful as well. In calculating such a propagator for one and two noncovariant gauge bosons those singularities demand from the outset the use of a prescription such as the Mandelstam-Leibbrandt (ML) one. We show that the implementation of the ML prescription does not remove certain pathologies associated with zero modes. However we present a causal, singularity-softening prescription and show how to keep causality from being broken without the zero mode nuisance and letting only the propagation of physical degrees of freedom.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We study the necessary conditions for obtaining infrared finite solutions from the Schwinger-Dyson equation governing the dynamics of the gluon propagator. The equation in question is set up in the Feynman gauge of the background field method, thus capturing a number of desirable features. Most notably, and in contradistinction to the standard formulation, the gluon self-energy is transverse order-by-order in the dressed loop expansion, and separately for gluonic and ghost contributions. Various subtle field-theoretic issues, such as renormalization group invariance and regularization of quadratic divergences, are briefly addressed. The infrared and ultraviolet properties of the obtained solutions are examined in detail, and the allowed range for the effective gluon mass is presented.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Among other things, the pure spinor formalism has been used to rederive some particular superstring scattering amplitudes in the last few years. I will briefly review how the computations were done and show that the kinematical factors of these amplitudes can be simply written as integrals in a pure spinor superspace. © 2007 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Using the results recently obtained for computing integrals over (non-minimal) pure spinor superspace, we compute the coefficient of the massless two-loop four-point amplitude from first principles. Contrasting with the mathematical difficulties in the RNS formalism where unknown normalizations of chiral determinant formulæ force the two-loop coefficient to be determined only indirectly through factorization, the computation in the pure spinor formalism can be smoothly carried out. © SISSA 2010.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)