147 resultados para Engenharia de Materiais
Resumo:
Having in mind that petroleum's history presents a huge growth, the exploration and production areas have been receiving lots of investments, in order to attend the increasing demand for gas and petroleum. Looking through that scenario, new technologies have been evolving in favor of discovering new natural petroleum deposits and act with effectiveness in truly deep waters without giving up the worldwide best operational security practices. The use of rigid pipes in marine installations have been rising quickly and, thanks to this reality, the many storage and pipe launching forms became study objects and are getting improved. The analysis of steel API X70 characteristics, proving that they are suitable for use in pipes developed to transport gas and petroleum is the theme of this presentation. A tensile test was conducted to determine the base metal's mechanical properties, draining's tension, traction's resistance, elasticity's modulus and maximum tension. An aspect that is concerning too is the metallographic analysis, in order to determine the studied iron's microstructure. Results of analyzes showed that the steel has high resistance, with good capacity for deformation and well defined yield point, concluding suitable for the application in question
Resumo:
The current competitive market requires companies to adapt so that they can meet the needs of customers in an agile manner and aimed at the lowest possible cost in their manufacture, be it a product or service. The Toyota Production System is aimed at higher profits through lean manufacturing practices with reduced spending, smaller lots and inventories, generated by market demand. The variety of products makes the setup of the equipment a critical point and it should be reduced as much as possible so it does not affect productivity. The rapid exchange of tools allows with few actions and a modification that time does not exceed one digit on your total time. In this study, a case study showed that only with standardization and use of cheap improvements made it possible to reduce setup time in bottle labeling machine by 98 minutes for a final time of approximately 10 minutes with little investment, demonstrating the feasibility the displayed and a monthly gain tool in bottles at approximately 120,000, generating a performance gain and budget of approximately R$ 94,000.00 per month
Resumo:
The benzoxaxine resin is a new class of thermoset phenolic resin, which is presenting, in the lasts decades, a great application in the aircraft industry due mainly to its excellent mechanical and thermal properties. This resin associates the mechanical properties of epoxy resin with the thermal and flame retardant properties of phenolic resin. In this context, they are considered polymers of high performance and they are excellent candidates to replace the current thermoset matrices used in the processing of high performance composites. Thus, in this study nanostructured composites Benzoxazine/CNT were produced at different concentrations of functionalized and non-functionalized CNT (0,1%; 0,5% and 1,0% w/w). The thermal stability of the benzoxazine resin and its nanostructured composites was studied using thermogravimetry (TGA) and degradation kinetic model Ozawa-Wall-Flynn (O-W-F). The thermal characterization also included differential scanning calorimetry (DSC) and dynamic-mechanical analysis, infrared spectroscopy with Fourier transform (FTIR) and scanning electron microscopy (SEM).The introduction of non-functionalized CNT at low concentrations resulted in nanostructured composites with better thermal properties in relation to the neat resin. For all cases, however, the dispersion of CNT in the matrix was ineffective
Resumo:
Ceramic powders based on Zn3Ga2Ge2O10: Cr3+ X% (X = 0.0; 0.5; 0.75; 1.0) were synthesized by solid-state reaction method. The gallium-zinc germanate doped with chromium presents an interesting property of phosphorescence, that means, it is capable of emitting light when excited by a source of radiation, and such emission remains for some time after stopping the source. For this reason, these materials can be widely applied in night-vision surveillance, (through the use of solar energy, for example), electronic devices screen, emergency routes signals, control panels indicators in dark environments, etc. In this job were considered different amounts of dopant in order to perform a comparison of structural and photoluminescent properties. For that, some analyses were performed on samples, such as XRD, FT-Raman, SEM, UV-vis and photoluminescence measurements (PL). Such analysis allowed to infer that the presence of chromium results in no phase transformation, so that the four compositions have the same set of phases: cubic, rhombohedral and hexagonal. Although the structure was not changed, chromium influences other properties / characteristics of these materials. Examples are: increase of band-gap, decrease of average particle size, small changes in binding energy checked by Raman and especially the increase of photoluminescent property. The chromium ions have great ease in replacing gallium ions in octahedral sites, resulting in emission of light with a wavelength of about 700 nm (infrared region), which is justified by the spin-forbidden 2E 4A2 transition. In other words, chromium is a favorable luminescent center, acting as a trap in the crystal structure, since it imprisons the excitation energy easily and releases it gradually, allowing the phosphorescence. It was observed that the composition ... (Complete abastract click electronic access below)
Resumo:
This work is part of several research related to the plan of design and construction of a sustainable house. The previous researches focused on sustainable materials and it have shown that ceramic material are more interesting to improve the thermal comfort and the reduction of fees and prices of the house, making possible to construct popular home, mainly clay bricks, that have high thermal inertia and low costs, besides the fact that it is easy to find the raw materials in nature and process them. However, a major issue in using clay bricks is that it uses too many energy to be processed during the sintering (burning), a crucial part of the process that assures mechanical resistance. Alternative materials are being proposed by the researchers, as the clay bricks without the sintering mixed with Portland cement, assuring the proper resistance to the brick. Raw materials of cement, however, also need to be thermally processed in rotary kilns, in a process called clinckerization. This research was proposed for comparing the energy used by the two types of bricks and other objectives, in order to determinate which one uses less thermal energy. The intention was to compare the energy used during the sintering of regular clay bricks and the unfired bricks with 10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, 90% and 100% of Portland cement. The paper also investigated and compared the use of electrical and thermal energy of all the bricks to identify how important were the thermal stages (sintering or clinkerization) relatively to the total energy spent. At last, a resumed analysis was performed to identify the possible health damages of the many life cycles of the bricks. The conclusion was that unfired bricks with less than 40% of cement use less thermal energy to be processed. In addition, their carbon dioxides emissions were less dangerous to ... (Complete abastract click electronic access below)
Resumo:
The present work aims to study one-dimensional nanomaterials semiconductors grown via by phase systems Grande oxides Technological Interest for applications in gas sensors. The Used material was tin oxide (SnO2) for their functional properties, and the grow method was the Polymeric Precursors. The films grown were the nanomaterials about substrates of alumina, deposited via spin coating technique, followed by heat treatment at 300C for 1 hour and 650C for 2 hours. Later the films of Performance sensors (sensitivity, speed response, selectivity, and stability) will be in avaliated in a hermetic chamber with controlled atmosphere and temperature. The synthesized materials were its structural and morphological properties characterized in atomic force microscopy (AFM), scanning electron microscopy (SEM), X-ray diffraction (XRD) and transmission electron microscopy (not have this result with Me). We sought to investigate one influence of different conditions for obtaining films (Variation Layers number) in structural and microstructural properties of semiconductors oxides. The synthesis method proved very effective, generating films with micro definitely, uniformity of the nanoparticles and hum high level of porosity, what makes the material of a viable final paragraph applicability
Resumo:
Nowadays, we live in a time of rapid research for technological advances, in a way that this pursuit of new technologies is deeply connected to the diversity of new materials that have been developed by mankind. It deals with issues such as materials with enhanced properties which offer better quality, less cost and high performance, while they are accessible both in their production and moment of operation. In this context, it was required to develop electrodes that were easy to prepare as well as which present high electric conductivity and good mechanic proprieties by using carbonaceous material as basis. For this reason, the best parameters of the furfuryl resin cures were established with different pH variations through viscosimetric measurements and differential scanning calorimetry. By scanning electron microscopy (SEM) was possible to identify an increased porosity in the samples with pH 7 and pH 8, as compared to samples with lower pH content. After carbonization of the material, the characterization of monolithic glassy carbon was held by means of FT-IR techniques, Raman spectroscopy, X-ray diffraction and cyclic voltammetry. The spectra showed that the change in pH does not have significant influence on the crystallographic ordering of the material and its structural characteristics. As for the electrochemical character, the CVM electrodes showed excellent response, with good reversibility and wide potential window. Some voltammetric curve deviations were only observed for the sample with pH 4, which may be related to processing parameters adopted
Resumo:
The development of nanostructured materials have aroused great interest of the industries all over the country, since they enable the development of devices that can be used as gate insulators on silicon transistors, electrochromic devices, solid electrolyte oxygen sensors and as a photoluminescent materials . In this project, it is proposed to investigate the optical properties of CeO2 modified with rare earth Er processed in hydrothermal-microwave. The synthesis of one-dimensional nanostructures (1D) was measured from dilute aqueous solutions of acids and salts of starting reagents in the presence of chemical basis, after these aqueous solutions were processed on hydrothermal-microwave to particle growth. The particles obtained after processing were characterized by X-ray Diffraction, Rietveld Analysis and Raman Spectroscopy. The particle morphology was observed by scanning electron microscopy with field emission gun. The synthesis of 1D nanostructures are evaluated for different surfactants and starting precursors (ceria different salts), pH, temperature and pressure which can modify the morphology of the nanostructures. Combining laboratory experiments and theoretical calculations it was desired to understand the organization of the nanoparticles and their resulting structure. Strict control of chemical homogeneity, crystal structure, microstructure and interaction of the CeO2 cluster with different surfactants using the Hartree-Fock method, was intended to obtain properties compatible with their use in catalysts and optical devices. The use of mineralizer agent KOH and 8 minutes of processing time synthesis conditions were chosen to evaluate the effect of Er dopant. It has been proved that this doping with rare earth increases the photoluminescent properties of the compound obtained without change the structural and morphological propreties of ceria
Resumo:
Despite the growing concern in seeking more sustainable energy sources, oil demand is likely to grow in coming years. To keep up with this growth, the oil industry has increasingly invested in innovation and efficiency. Knowing that, new technologies have been developed to explore deeper waters, without giving up the best practices in worldwide operational safety. The use of rigid pipelines in deepwater offshore facilities is increasing quickly and because of this, the ways of storing and launching pipe have been studied and perfected. In this paper the Bauschinger effect on API 5L X70 steel was analyzed proving that there was a reduction in yield strength when an effort was applied in a previous direction, then an effort was then applied in the opposite direction. To observe this phenomenon, the tensile test was conducted to determine the mechanical properties of the base metal, such as yield stress, tensile strength, elasticity and maximum tensile, so then compare it with the results obtained in the Bauschinger Effect Test. The analysis results showed that the steel had high resistance, with good plastic deformation capacity without failing, well-defined yield point, showing itself appropriate for the operation of oil and gas pipes
Resumo:
Natural fibers have been highlighted as a renewable material that can replace materials from oil and its derivatives. In this context, Brazil becomes the perfect setting because of the diversity of fibers found in its territory, such as sugarcane, sisal, rice, cotton, coconut, pineapple, among others. The paineiras (Chorisia speciosa St. Hil) are typically Brazilian trees, which produce paina as fruit. These fruits are still little studied as a source of lignocellulose by research groups. This project aimed obtaining and characterization of cellulose nanofibers from the fibers from the paina fibers. Obtaining nanocellulose is practically made through simplified chemical processes. First, was performed out pre-treatments to removal of waxes, lignin and hemicellulose. The first stage of pre-treatment was carried out by alkaline aqueous solution of sodium hydroxide (NaOH) at 5wt%, where the fibers were under constant agitation for 1h at 70°C. Through alkali treatment it was possible to remove most of the lignin, hemicellulose, waxes and extractives. After the alkaline treatment was done bleaching with an aqueous solution of sodium hydroxide (NaOH) to 4wt% and hydrogen peroxide (H2O2) to 24wt% 1:1 during 2h with constant stirring to 50 °C. Through bleaching was possibe to remove residual lignin, and got cellulose with 72% of crystallinity. Nanocellulose of paina fibers was extracted using different conditions of acid hydrolysis with sulfuric acid (H2SO4) to 50wt%. After acid hydrolysis, the suspensions were centrifuged during 30 min and dialyzed in water to remove excess acid until neutral pH (6-7). Then the suspensions were passed by ultrasonification in an ultrasound 20 kHz during 1h in an ice bath. Untreated, alkalinized and bleached fibers as well as cellulose nanoparticles were characterized by the techniques of thermogravimetry ... (Complete abastract click electronic access below)
Resumo:
Surface treatments have been used to modify the surface of titanium alloys. The purpose of this study is to evaluate the surface of Ti-30Ta alloy after biomimetic approach associated to antibiotic incorporation. The ingots were obtained in arc melting furnace, treated and cold-worked by swaging. The surface treatment was performed in two steps: biomimetic treatment and antibiotic incorporation. For biomimetic treatment, first an alkaline treatment (NaOH 1M at 60ºC) was performed, followed by heat treatment and immersion in SBFx5 (Simulated Body Fluid) for a period of 24 hours. In order to incorporate the antibiotic, samples were immersed in a solution formed by drugs plus SBFx5 for 48 hours. The sample surfaces were analyzed by scanning electron microscopy (SEM), X-Ray diffraction (XRD), atomic force microscopy (AFM) and contact angle measurements. The release of antibiotic from coated implants was measured in phosphate buffer saline at pH 7.4 by using UV/VIS spectrometry. Results have shown changes on the surface after incorporating the drug, which is gradually co-precipitated with the Ca-P crystals, forming a uniform and rough layer on the metal surface
Resumo:
The world population is growing at exponential scales, thus the demand for food grows significantly. The use of pesticides is seen as a way to meet the demand for food and increase the efficiency and productivity of the agricultural sector. BASF SA in partnership with packaging suppliers represent a remarkable scene in the Brazilian market in the agrochemicals sector. In 2014, the Department of Agro from BASF Packaging, identified in its production process certain deformation of its rigid packaging during the filling process of pesticides. This phenomenon is probably caused by the low resistance to compression that the package is used. In order to eliminate the deformation of rigid packaging arising from the filling step, a study will be conducted in conjunction with the supplier JET UNIPAC whose on line problems occurred more frequently. The study is to identify the strength of the rigid containers standardize a compression resistance value at which the package is not deformed after the filling step. This study will present an investigation through experiments combined with theoretical concepts in order to determine possible causes for the emergence of this phenomenon. At the end of the study, a solution to eliminate or reduce to the maximum the packaging deformation problem appears
Resumo:
The machining process is so much important in the economic world. Many machining parameters have been studied to maximize results, in terms of cost and lifetime. (decrease of cutting tool wear, improved surface finish, among others). The objective of this study is to evaluate the wear of a ceramic tool in the machining of the aluminum alloy 6005 A. The analysis of the wear of the cutting tools is very important due to its big impact on the final finishing of the piece as a whole. The evaluation took place in two stages, first it was done a detailed study of the literature of the whole machining process, where the study of the formation and swarf classification were among the most important steps in this phase. The second step consisted in the machining of the piece of aluminum 6005 A with a ceramic cutting tool constituded of aluminum oxide and magnesium oxide with silicon carbide impregnation. The swarf generated in this process was then photographed with a Zeiss optical microscope and analyzed for its size and shape. Through this comparison it was concluded that the swarf are generated shear swarfs, shaped like a tangled, fragmented and arcs connected, thus classifying the material as medium difficulty machining. Through the image analysis tool it was concluded that the parameter of lower wear was the: Vc = 500m / min, f = 0.10mm / rev and ap = 0.5mm
Resumo:
With advances in health care, has been na increase of demand for material that could replace the functions of the human body parts, thus evolved biomedic prosthesis which today are responsible for the constant improvement of the quality of life. The Titanium alloys are widely used as implants due to its properties, like high mechanical resistance, biocompatibility and corrosion resistance, and the addition alloying elements like Zirconium, may improve some of those properties. Such properties are related to the microstructure and consequently to the type of processing performed. The purpose of this dissertation was to characterize the experimental alloy Ti15Zr after route of processsing and heat treatment in order to extend the knowledge about this alloy. The latter has been abtained by fusion of pure metals in a arc melting furnace with an inert argon atmosphere. The material has been homogenized in a tube furnace at 950ºC for 24h and cold worked by swaging, after that, bars with 10 mm of diameter were obtained by the process of rotary forging. The samples were solubilized at 900º C for 2 hours and quenched in water. After that, 4 samples were submitted to the aging, at 400º C, 450º C, 500º C and 550º C. The microstructure and phase analysis was done by optical microscopy and X-rays diffraction (XRD), the mechanical characterization was carried out by microhardness test and finally, evaluation of corrosion resistance of the alloy by electrochemical tests. The XRD and the optical microscopy made it possible to analyze that the heat treatment influenced the phase shifting from α to α', and probably affected the alloy hardness, at the first aged sample at 500º Chas been a sudden increase in the value of hardness, probably by appearance of omega phase, unwanted phase to the medical application duo to great fragility, and finally ... (Complete abstract click electronic access below)
Resumo:
The multiphase steels are gaining increasing attention in scientific studies because of the different mechanical and microstructural properties that the material can achieve under different thermomechanical and heat treatments that can be submitted. In the present study, it was made a microstructural study thru the triple attack technic associated with optical microscopy and mechanical characterization of medium carbon AISI 4350 steel thru a tensile strength test, subjected to three routes of heat treatment: annealing, quenching and tempering and isothermal annealing. It was verified the predominance of ferrite-perlite constituent in the specimen annealed, martensitic in the quenched and tempered specimen and bainitic in the annealed isothermally specimen. The annealed material showed a higher ductility, while the hardened and tempered specimen showed the highest hardness and ultimately the bainitic specimen showed a combination of the two abovementioned mechanical properties. Thus, we proved that the multiphase steel SAE 4350 can be a versatile material with great potential for various industrial applications