79 resultados para Distribution Functions


Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper presents a mixed integer nonlinear programming multiobjective model for short-term planning of distribution networks that considers in an integrated manner the following planning activities: allocation of capacitor banks; voltage regulators; the cable replacement of branches and feeders. The objective functions considered in the proposed model are: to minimize operational and investment costs and minimize the voltage deviations in the the network buses, subject to a set of technical and operational constraints. A multiobjective genetic algorithm based on a Non-Dominated Sorting Genetic Algorithm (NSGA-II) is proposed to solve this model. The proposed mathematical model and solution methodology is validated testing a medium voltage distribution system with 135 buses. © 2013 Brazilian Society for Automatics - SBA.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A theoretical approach aiming at the prediction of segregation of dopant atoms on nanocrystalline systems is discussed here. It considers the free energy minimization argument in order to provide the most likely dopant distribution as a function of the total doping level. For this, it requires as input (i) a fixed polyhedral geometry with defined facets, and (ii) a set of functions that describe the surface energy as a function of dopant content for different crystallographic planes. Two Sb-doped SnO2 nanocrystalline systems with different morphology and dopant content were selected as a case study, and the calculation of the dopant distributions expected for them is presented in detail. The obtained results were compared to previously reported characterization of this system by a combination of HRTEM and surface energy calculations, and both methods are shown to be equivalent. Considering its application pre-requisites, the present theoretical approach can provide a first estimation of doping atom distribution for a wide range of nanocrystalline systems. We expect that its use will support the reduction of experimental effort for the characterization of doped nanocrystals, and also provide a solution to the characterization of systems where even state-of-art analytical techniques are limited.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)