157 resultados para Dermal toxicity
Resumo:
The nihB gene of Aspergillus nidulans was found to confer sensitivity to elevated concentrations of nitrite, compact morphology and absence of conidiation. The nihB locus was allocated to linkage group II and was recessive in heterozygous diploids. When the nihB1 mutant was grown on a mixture of nitrite plus NH4 + its sensitivity to nitrite was unchanged. A possible role for this gene in nitrite transport and/or the maintenance of membrane integrity is discussed. © 1992 Rapid Communications of Oxford Ltd.
Resumo:
The exoantigen of Paracoccidioides brasiliensis standardized by Camargo et al. [1] (AgR) was used to evaluate the in vivo and in vitro cell immune response of experimental animals and of patients with paracoccidioidomycosis (PBM). Fava Netto antigen (AgF) was tested in parallel as a control antigen. The study was conducted with mice and guinea pigs infected with P. brasiliensis or immunized with its fungal antigens, on patients with PBM and on their respective control groups. The cell immune response was analysed by skin tests, and by the macrophage and leucocyte migration inhibition tests (MMIT and LMIT) in the animals and in the patients, respectively. The skin test with AgR as paracoccidioidin was positive in infected or immunized mice and guinea pigs and negative in control animals. The skin tests with AgR (24 h) showed 96.7% positivity in patients with PBM and were negative in control individuals. Histopathological study of the in vivo tests in the different experimental models was consistent with a delayed hypersensitivity response (DHR). Immunohistochemical study of the skin tests of PBM patients demonstrated a predominance of T lymphocytes, confirming the nature of a DHR to the fungal antigens. The in vitro cell immune response showed variable results for the various experimental models, i.e. significant rates of MMIT in immunized mice, a tendency to positivity in infected guinea pigs, and the absence of migration inhibition in PBM patients. Taken together, the data indicate that the AgR is efficient as paracoccidioidin in the evaluation of DHR in PBM, with an optimum time of reading the test of 24 h.
Resumo:
Nickel compounds have high potential risk for the health of populations and for this reason their toxic effects should be urgently established. To determine the effect of nickel monosulfide in the muscle at the injection site on pancreatic, hepatic, and osteogenic lesions and the potential therapeutic effect of Cu-Zn superoxide dismutase (SOD), male Wistar rats received single intramuscular injections of nickel monosulfide (NiS - 7 mg Ni2+/Kg). A group of these experimental rats were injected intraperitoneally, with a single weekly dose of SOD covalently linked to polyethylene glycol (SOD-PEG). Rats were sacrificed at 2, 4, 6, and 8 months after Ni2+ injection. Nickel monosulfide produced tumors at the injection site. The increased phospholipid, alanine transaminase (ALT), alkaline phosphatase (ALP), and amylase levels in serum, in absence of SOD-PEG, reflected the toxic effects on pancreatic, hepatic, and osteogenic tissues of rats. SOD activity was increased in serum of rats receiving SOD-PEG throughout the experiment, and no significant difference was observed in biochemical parameters of control and experimental rats in presence of SOD- PEG. Superoxide radical generated by Ni2+ is of primary importance in the development of tumors at the injection site. Superoxide anion (O2 -) is also an important toxic intermediate with respect to hepatic, pancreatic, and osteogenic injury, since SOD-PEG has a potential therapeutic effect.
Resumo:
Contamination with cadmium compounds poses high potential risk for the health of populations and for this reason the treatment of their toxic effects should urgently be established. The present study was carried out to determine whether α-tocopherol intake can protect tissues against damage induced by cadmium, and to clarify the contribution of superoxide radicals (O 2 -) in this process. Cadmium chloride was tested for tissue damage by a single intraperitoneal injection of Cd 2+ ions (2 mg Kg -1). To determine the potential therapeutic effect of vitamin E, a group of Cd 2+-treated rats received a drinking solution of α-tocopherol (40 mg l -1) for 15 days. Cadmium induced increased serum creatinine and total lactate dehydrogenase, reflecting renal and cardiac damage. The increased lipoperoxide and decreased Cu-Zn superoxide dismutase levels indicated the generation of superoxide radicals in cadmium-treated rats. Tocopherol induced increased serum high-density lipoprotein and depressed the toxic effects of Ca 2+ alone, since creatinine and lactate dehydrogenase determinations were recovered to the control values. Tocopherol decreased lipoperoxide and led the superoxide dismutase activities to approach those of the control values. We concluded that superoxide radicals are produced as mediators of cadmium toxicity. Tocopherol possesses a significant anti-radical activity and inhibits the cadmium effect on superoxide dismutase activity. Tocopherol also protected tissues from the toxic effects of cadmium by a direct antioxidant action which decreased lipoperoxide formation.
Resumo:
The development of Leucoagaricus gongylophorus, the fungus cultured by the leaf-cutting ant Atta sexdens was inhibited in vitro by synthetic compounds containing the piperonyl group. In addition, worker ants that were fed daily on an artificial diet to which these compounds were added had a higher mortality rate than the controls. The inhibition of the fungal growth increased with the size of the carbon side chain ranging from C1 through C8 and decreasing thereafter. 1-(3,4-Methylenedioxybenzyloxy)octane (compound 5) was the most active compound and inhibited the fungal development by 80% at a concentration of 15 μg m1-1. With worker ants the toxic effects started with compound 5 and increased with the number of carbons in the side chain. Thus, for the same concentration (100 μg m1-1) the mortality rates observed after 8 days of diet ingestion were 82%, 66% and 42%, for 1-(3,4-methylenedioxybenzyloxy)decane, 1-(3,4-methylenedioxybenzyloxy)dodecane and compound 5, respectively, whereas with commercial piperonyl butoxide the mortality was 68%. The latter compound, which is known as a synergist insecticide, was as inhibitory to the symbiotic fungus as the synthetic compound 5. The possibility of controlling these insects in the future using compounds that can target simultaneously both organisms is discussed. © 2001 Society of Chemical Industry.
Resumo:
The present study examines the effects of a hypercaloric diet on hepatic glucose metabolism of young rats, with and without monosodium glutamate (MSG) administration, and the association of these treatments with evaluating markers of oxidative stress. Male weaned Wistar rats (21 days old) from mothers fed with a hypercaloric diet or a normal diet, were divided into four groups (n=6): control (C) fed with control diet; (MSG) treated with MSG (4 mg/g) and control diet; (HD) fed with hypercaloric diet and (MSG-HD) treated with MSG and HD. Rats were sacrificed after the oral glucose tolerance test (OGTT), at 45 days of treatments. Serum was used for insulin determination. Glycogen, hexokinase(HK), glucose-6-phosphatase(G6PH), lipid hydroperoxide, superoxide dismutase(SOD) and glutathione peroxidase(GSH-Px) were determined in liver. HD rats showed hypoglycemia, hyperinsulinemia, and high hepatic glycogen, HK and decreased G6PH. MSG and MSG-HD had hyperinsulinemia, hyperglycemia, decreased HK and increased G6PH in hepatic tissue. These animals had impaired OGTT. HD, MSG and MSG-HD groups had increased lipid hydroperoxide and decreased SOD in hepatic tissue. Hypercaloric diet and monosodium glutamate administration induced alterations in metabolic rate of glucose utilization and decreased antioxidant defenses. Therefore, the hepatic glucose metabolic shifting induced by HD intake and MSG administration were associated with oxidative stress in hepatic tissue.
Resumo:
Background: Previous experiments have shown that a decoction of Bauhinia forficata leaves reduces the changes in carbohydrate and protein metabolism that occur in rats with streptozotocin-induced diabetes. In the present investigation, the serum activities of enzymes known to be reliable toxicity markers were monitored in normal and streptozotocin-diabetic rats to discover whether the use of B. forficata decoction has toxic effects on liver, muscle or pancreas tissue or on renal microcirculation. Methods: An experimental group of normal and streptozotocin-diabetic rats received an aqueous decoction of fresh B. forficata leaves (150 g/L) by mouth for 33 days while a control group of normal and diabetic rats received water for the same length of time. The serum activity of the toxicity markers lactate dehydrogenase, creatine kinase, amylase, angiotensin-converting enzyme and bilirubin were assayed before receiving B. forficata decoction and on day 19 and 33 of treatment. Results: The toxicity markers in normal and diabetic rats were not altered by the diabetes itself nor by treatment with decoction. Whether or not they received B. forficata decoction the normal rats showed a significant increase in serum amylase activity during the experimental period while there was a tendency for the diabetic rats, both treated and untreated with decoction, to have lower serum amylase activities than the normal rats. Conclusions: Administration of an aqueous decoction of B. forficata is a potential treatment for diabetes and does not produce toxic effects measurable with the enzyme markers used in our study. © 2004 Pepato et al; licensee BioMed Central Ltd.
Resumo:
The purpose of this study was to evaluate the host response of a human and a porcine derived acellular dermal tissue (ADT) implanted in the subcutaneous tissue of a rat model. Two subcutaneous pockets were surgically created along the dorsal midline of 25 rats (5 rats/group). The human ADT was placed superiorly and the porcine ADT, inferiorly. The animals were sacrificed at 07, 15, 30, 60 and 180 postoperative days (PO) and the ADTs and surrounding soft tissues were assessed for ultrastructural evaluation by transmission electron microscopy. The ultrastructural findings were similar in both materials. Normal collagen and elastic fibers bundles were observed during all experimental moments, as well as macrophages presenting cytoplasmic enlargements digesting cellular portions after 15 PO. From 30 until 180 PO, vacuolar structures filled with an amorphous, electron-transparent substance, were present inside and outside the fibroblasts. Both human and porcine ADT showed similar pattern of ultrastructural response when implanted in the subcutaneous tissue of rats. The porcine ADT appears as a good alternative to be used as a biomaterial.
Resumo:
Extracts of different sesame plant (Sesamum indicum, Linnaeus) organs were tested through ingestion and contact experiments to investigate their toxicity to Atta sexdens rubropilosa (Forel) workers. Dichloromethane extracts of seeds were toxic to the leaf-cutting ants and the factor responsible for the toxicity does not show seasonal occurrence.
Resumo:
Extracts of the ripe seeds of the sesame plant (Sesamum indicum, Linnaeus) were tested through contact experiments to investigate their toxicity to Atta sexdens rubropilosa workers. Dichloromethane extract of seeds was toxic to the ants and the factor responsible for this effect was distributed through the ethyl acetate fraction. This fraction was divided into four sub fractions composed of: A) triglycerides, B) monoglycerides + diglycerides + triglycerides, C) diglycerides + sesamoline + sesamine and D) sesamine. However, when these sub fractions were separated, no toxicity was observed. Therefore, in order to determine why the activity was lost, the concentration of each sub fraction was duplicated, and the possible combinations among them were also tested. We concluded that the toxicity to the ants is due mainly to a mixture of triglycerides, and sesamoline or the combination of sesamoline + sesamine can be a synergistic factor in this fraction.
Resumo:
Dimorphandra mollis is a characteristic plant from Brazilian saP vanna-like vegetation. The pollen of this species could be toxic to bees and the objective of the present investigation was to study the toxicity of methanolic extracts obtained from the flowers, peduncles and stem bark of D. mollis to Apis mellifera workers. For the study, the extracts were incorporated into the diet of the bees for later evaluation of mortality rates. The substances isolated: neoisoastilbin, catechin, astilbin and tannins were tested on adult workers and only catechin did not cause toxic effects. The data obtained in the toxicity bioassays were analyzed statistically by Log Rank test and all methanolic extracts showed significant (p<0.0001) toxic effects. Astilbin is also the major component of pollen grains, and is probably responsible for honeybee mortality during blooming periods.