136 resultados para DIAZEPAM EXPOSURE
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Single high doses of estrogen (35 mg/kg body weight) were administered to young rats aiming to exacerbate its effects on germ cell populations. The short-term (1 week) and medium-term (7 weeks) consequences of this estrogenic treatment (ET) on the testis were evaluated using light and electron microscopies, quantitative methods and TUNEL reaction. Short-term ET led to 50% atrophy of the testis, however, in the medium term the gonado-somatic index was recovered. No histopathological alterations were found at seminiferous epithelium except for short-term severe degeneration of elongated spermatids (EL) and low frequency of these cells in both time intervals. Two morphologically distinct patterns of degeneration were observed: (1) clusters of EL which were TUNEL-negative and exhibited bizarre appearance and nuclear fragmentation, (2) isolated apoptotic EL within the cytoplasm of Sertoli cells (SC). Both degenerative phenomena were more frequent in stages III - VIII of seminiferous cycle, whereas at stages I and II only coiling of flagellum was observed. One week after ET, small amounts of EL were detected in stages IX - XII, suggesting spermiation failure. Signs of functional SC damage such as an accumulation of myelin-like inclusions in their cytoplasm were observed in the short but not medium-term. However, the apoptotic rates still remained five times higher and the number of elongated spermatids was three-fold lower. Our data indicate that exposure to a high dose of estrogen around puberty has stage-specific effects on the testis and causes massive degeneration of elongated spermatids. (c) 2007 Elsevier Ltd. All rights reserved.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Dental fluorosis is a developmental disturbance of dental enamel, caused by successive exposures to high concentrations of fluoride during tooth development, leading to enamel with lower mineral content and increased porosity. The severity of dental fluorosis depends on when and for how long the overexposure to fluoride occurs, the individual response, weight, degree of physical activity, nutritional factors and bone growth. The risk period for esthetic changes in permanent teeth is between 20 and 30 months of age. The recommended level for daily fluoride intake is 0.05 - 0.07 mg F/Kg/day, which is considered of great help in preventing dental caries, acting in remineralization. A daily intake above this safe level leads to an increased risk of dental fluorosis. Currently recommended procedures for diagnosis of fluorosis should discriminate between symmetrical and asymmetrical and/or discrete patterns of opaque defects. Fluorosis can be prevented by having an adequate knowledge of the fluoride sources, knowing how to manage this issue and therefore, avoid overexposure.
Resumo:
Objective: This study evaluated the surface degradation effect of acidulated phosphate fluoride (APF) gel exposure on the glassy matrix ceramics as a function of time. Material and methods: Disc-shaped ceramic specimens (N = 120, 10/per ceramic material) were prepared in stainless steel molds (inner diameter: 5 mm, height: 2 mm) using 6 dental ceramics: 3 indicated for ceramic-fused-to-metal (Vita Omega 900, Carmen and Vita Titankeramik), 2 for all-ceramic (Vitadur Alpha and Finesse (R) Low Fusing) and 1 for both types of restorations (IPS d. SIGN). The specimens were wet ground finished, ultrasonically cleaned and auto-glazed. All specimens were subjected to calculation of percentage of mass loss, surface roughness analysis and topographical description by scanning electron microscopy (SEM) before (0 min) and after exposure to 1.23 % APF gel for 4 min and 60 min representing short-and long-term etching effect, respectively. The data were analyzed using two-way ANOVA with repeated measures and Tukey` s test (alpha=0.05). Results: Significant effect of the type of the ceramics (p=0.0000, p=0.0031) and exposure time (p=0.0000) was observed in both surface roughness and percentage of mass loss values, respectively. The interaction factor between both parameters was also significant for both parameters (p=0.0904, p=0.0258). Both 4 min (0.44 +/- 0.1-0.81 +/- 0.2 mu m) and 60 min (0.66 +/- 0.1 - 1.04 +/- 0.3 mu m) APF gel exposure created significantly more surface roughness for all groups when compared to the control groups (0.33 +/- 0.2-0.68 +/- 0.2 mu m) (p<0.05). There were no significant differences in percentage of mass loss between the ceramics at 4 min (p>0.05) but at 60 min exposure, IPS d. SIGN showed the highest percentage of mass loss (0.1151 +/- 0.11). The mean surface roughness for Vita Titankeramik (0.84 +/- 0.2 mu m) and Finesse (R) Low Fusing (0.74.+/- 0.2 mu m) was significantly higher than those of the other ceramics (0.59 +/- 0.1 mu m - 0.49 +/- 0.1 mu m) and Vita Titankeramik (p<0.05) regardless of the exposure time. A positive correlation was found between surface roughness and percentage of mass loss for all ceramic materials [(r=0.518 (Vitadur Alpha), r=0.405 (Vita Omega 900), r=0.580 (Carmen), r=0.687 (IPS d. SIGN), r=0.442 (Finesse (R) Low Fusing), r=0.572 (Vita Titankeramik), Pearson's correlation coefficient)]. The qualitative SEM analysis showed evidence of corrosive attack on all of ceramics at varying degrees. Conclusions: The ceramics indicated for either metal-ceramic or all-ceramic restorations were all vulnerable to surface texture changes and mass loss after short-term and long-term APF gel exposure.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
First, the effect of ferrioxalate or iron nitrate on the photo-Fenton degradation efficiency of the pharmaceuticals lincomycin (LCM) and diazepam (DZP) was evaluated. The degradation of both pharmaceuticals was improved in the presence of ferrioxalate in relation to Fe(NO(3)), either under black-light or solar irradiation. The degradation of the pharmaceuticals was then evaluated when present in an effluent from sewage treatment plant (STP) under black-light irradiation. Pharmaceuticals oxidation was not influenced by the matrix, since very similar results were obtained when compared to the experiments carried out in distilled water. However, DOC removal was slightly affected by the matrix, due probably to the generation of recalcitrant intermediates during effluent photodegradation and to the high content of inorganic carbon of STP effluent. Even so, high DOC removal percentages were achieved, 65% for lincomycin and 80% for diazepam after 60 min irradiation. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)