153 resultados para Coulomb Gauge
Resumo:
We examine a recently proposed connection constraining U(1)(em) electromagnetic gauge invariance and the nature of neutrino mass terms in the framework of G(0) = SU(3)(C) x G(W) x U(1)(N) gauge extensions of the standard model where G(W) denotes the weak isospin special unitary extended groups. We show that in a large class of G(0) models there is a unique fermion representation content and scalar fields which select the neutrino mass terms. Noteworthy. even though there are mathematically equivalent representation contents then can be different aspects concerning the physical consequences which are not a mere truism.
Resumo:
Podolsky's higher-order field equations are obtained by generalizing the laws of Podolsky's electrostatics, which follow from Coulomb's generalized law and superposition, to be consistent with special relativity. In addition, it is necessary to take into account the independence of the observed charge of a particle on its speed. It is also shown that the gauge-independent term concerning the Feynman propagator for Podolsky's generalized electrodynamics has a good ultraviolet behaviour at the expense of a negative metric massive ghost which, contrary to what is currently assumed in the literature, is non-tachyonic. A brief discussion on Podolsky's characteristic length is presented as well.
Resumo:
The SU(3)cxSU(3)LxU(1)N model of Pisano and Pleitez extends the standard model in a particularly nice way, so that, for example, the anomalies cancel only when the number of generations is divisible by 3. The original version of the model has some problems accounting for the lepton masses. We resolve this problem by modifying the details of the symmetry-breaking sector in the model.
Resumo:
The unitary pole approximation is used to construct a separable representation for a potential U which consists of a Coulomb repulsion plus an attractive potential of the Yamaguchi type. The exact bound-state wave function is employed. U is chosen as the potential which binds the proton in the 1d5/2 single-particle orbit in F-17. Using the separable representation derived for U, and assuming a separable Yamaguchi potential to describe the 1d5/2 neutron in O-17, the energies and wave functions of the ground state (1+) and the lowest 0+ state of F-18 are calculated in the Gore-plus-two-nucleons model solving the Faddeev equations.
Resumo:
In the usual and current understanding of planar gauge choices for Abelian and non-Abelian gauge fields, the external defining vector n(mu), can either be space-like (n(2) < 0) or time-like (n(2) > 0) but not light-like (n(2) = 0). In this work we propose a light-like planar gauge that consists of defining a modified gauge-fixing term, L-GF, whose main characteristic is a two-degree violation of Lorentz covariance arising from the fact that four-dimensional space-time spanned entirely by null vectors as basis necessitates two light-like vectors, namely n(mu) and its dual m(mu), with n(2) = m(2) = 0, n . m not equal 0, say, e.g. normalized to n . m = 2.
Resumo:
This paper describes a strain gauge-based sensor used for measuring finger force. The theory, design, and sensor construction details are presented. It was constructed using metallic strain gauges and a carefully designed structure which has a protection de-vice that impedes the sensor damage when forces higher than 100 N are applied. Its dimensions are suitable for measuring thumb force, but the same design can be used for constructing smaller sensors for other fingers. It is rugged, presents linear response, good repeatability, resolution of 0.3 N, low hysteresis, and sensitivity of 0.12 V/N. It can be useful in rehabilitation engineering, biomechanics, robotics, and medicine.
Resumo:
In this work the independent particle model formulation is studied as a mean-field approximation of gauge theories using the path integral approach in the framework of quantum electrodynamics in 1 + 1 dimensions. It is shown how a mean-field approximation scheme can be applied to fit an effective potential to an independent particle model, building a straightforward relation between the model and the associated gauge field theory. An example is made considering the problem of massive Dirac fermions on a line, the so called massive Schwinger model. An interesting result is found, indicating a behaviour of screening of the charges in the relativistic limit of strong coupling. A forthcoming application of the method developed to confining potentials in independent quark models for QCD is in view and is briefly discussed.
Resumo:
The methodology based on the association of the variational method with supersymmetric quantum mechanics is used to evaluate the energy states of the confined hydrogen atom. (C) 2002 Elsevier B.V. B.V. All rights reserved.
Resumo:
The Schrodinger equation with the truncated Coulomb potential is solved using the supersymmetric quantum mechanics formalism, with and without the cutoff in the angular momentum potential. We obtain some analytical eigenfunctions and eigenvalues for particular values of the cutoff parameter.
Resumo:
A scheme inspired in Lie algebra extensions is introduced that enlarges gauge models to allow some coupling between space-time and gauge space. Everything may be written in terms of a generalized covariant derivative including usual differential plus purely algebraic terms. A noncovariant vacuum appears, introducing a natural symmetry breaking, but currents satisfy conservation laws alike those found in gauge theories. © 1991 American Institute of Physics.
Resumo:
In this work we discuss the effect of quartic fermion self-interacting terms on the dynamically generated photon masses in 1+1 dimensions, for vector, chiral, and non-Abelian couplings. In the vector and chiral cases we find exactly the dynamically generated mass modified by the quartic term while in the non-Abelian case we find the dynamically generated mass associated with its Abelian part. We show that in the three cases there is a kind of duality between the gauge and quartic couplings. We perform functional as well as operator treatments allowing for the obtention of both fermion and vector field solutions. The structures of the Abelian models in terms of θ vacua are also addressed.
Resumo:
We show that if a gauge theory with dynamical symmetry breaking has nontrivial fixed points, they will correspond to extrema of the vacuum energy. This relationship provides a different method to determine fixed points.
Resumo:
We study in a model independent way the role of a techniomega resonance in the process e+e-→ W+W-Z at the Next Linear Collider. © 1998 Elsevier Science B.V.