123 resultados para Conformal Antenas


Relevância:

10.00% 10.00%

Publicador:

Resumo:

We investigate higher grading integrable generalizations of the affine Toda systems, where the flat connections defining the models take values in eigensubspaces of an integral gradation of an affine Kac-Moody algebra, with grades varying from l to -l (l > 1). The corresponding target space possesses nontrivial vacua and soliton configurations, which can be interpreted as particles of the theory, on the same footing as those associated to fundamental fields. The models can also be formulated by a hamiltonian reduction procedure from the so-called two-loop WZNW models. We construct the general solution and show the classes corresponding to the solitons. Some of the particles and solitons become massive when the conformal symmetry is spontaneously broken by a mechanism with an intriguing topological character and leading to a very simple mass formula. The massive fields associated to nonzero grade generators obey field equations of the Dirac type and may be regarded as matter fields. A special class of models is remarkable. These theories possess a U(1 ) Noether current, which, after a special gauge fixing of the conformal symmetry, is proportional to a topological current. This leads to the confinement of the matter field inside the solitons, which can be regarded as a one-dimensional bag model for QCD. These models are also relevant to the study of electron self-localization in (quasi-)one-dimensional electron-phonon systems.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A fourth-order numerical method for solving the Navier-Stokes equations in streamfunction/vorticity formulation on a two-dimensional non-uniform orthogonal grid has been tested on the fluid flow in a constricted symmetric channel. The family of grids is generated algebraically using a conformal transformation followed by a non-uniform stretching of the mesh cells in which the shape of the channel boundary can vary from a smooth constriction to one which one possesses a very sharp but smooth corner. The generality of the grids allows the use of long channels upstream and downstream as well as having a refined grid near the sharp corner. Derivatives in the governing equations are replaced by fourth-order central differences and the vorticity is eliminated, either before or after the discretization, to form a wide difference molecule for the streamfunction. Extra boundary conditions, necessary for wide-molecule methods, are supplied by a procedure proposed by Henshaw et al. The ensuing set of non-linear equations is solved using Newton iteration. Results have been obtained for Reynolds numbers up to 250 for three constrictions, the first being smooth, the second having a moderately sharp corner and the third with a very sharp corner. Estimates of the error incurred show that the results are very accurate and substantially better than those of the corresponding second-order method. The observed order of the method has been shown to be close to four, demonstrating that the method is genuinely fourth-order. © 1977 John Wiley & Sons, Ltd.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We review a formalism of superstring quantization with manifest six-dimensional spacetime supersymmetry, and apply it to AdS3 × S3 backgrounds with Ramond-Ramond flux. The resulting description is a conformal field theory based on a sigma model whose target space is a certain supergroup SU′(2|2).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We consider a two-dimensional integrable and conformally invariant field theory possessing two Dirac spinors and three scalar fields. The interaction couples bilinear terms in the spinors to exponentials of the scalars. Its integrability properties are based on the sl(2) affine Kac-Moody algebra, and it is a simple example of the so-called conformal affine Toda theories coupled to matter fields. We show, using bosonization techniques, that the classical equivalence between a U(1) Noether current and the topological current holds true at the quantum level, and then leads to a bag model like mechanism for the confinement of the spinor fields inside the solitons. By bosonizing the spinors we show that the theory decouples into a sine-Gordon model and free scalars. We construct the two-soliton solutions and show that their interactions lead to the same time delays as those for the sine-Gordon solitons. The model provides a good laboratory to test duality ideas in the context of the equivalence between the sine-Gordon and Thirring theories. © 2000 Elsevier Science B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The soliton spectrum (massive and massless) of a family of integrable models with local U(1) and U(1) ⊗U(1) symmetries is studied. These models represent relevant integrable deformations of SL(2,ℝ) ⊗U(1) n-1-WZW and SL(2,ℝ) ⊗ SL(2,ℝ) ⊗U(1) n-2-WZW models. Their massless solitons appear as specific topological solutions of the U(1)(or U(1) ⊗ U(1)-) CFTs. The nonconformal analog of the GKO-coset formula is derived and used in the construction of the composite massive solitons of the ungauged integrable models. © SISSA/ISAS 2002.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Using the U(4) hybrid formalism, manifestly N = (2,2) worldsheet supersymmetric sigma models are constructed for the type-IIB superstring in Ramond-Ramond backgrounds. The Kahler potential in these N = 2 sigma models depends on four chiral and antichiral bosonic superfields and two chiral and antichiral fermionic superfields. When the Kahler potential is quadratic, the model is a free conformal field theory which describes a flat ten-dimensional target space with Ramond-Ramond flux and non-constant dilaton. For more general Kahler potentials, the model describes curved target spaces with Ramond-Ramond flux that are not plane-wave backgrounds. Ricci-flatness of the Kahler metric implies the on-shell conditions for the background up to the usual four-loop conformal anomaly. © SISSA/ISAS 2002.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Hughston has shown that projective pure spinors can be used to construct massless solutions in higher dimensions, generalizing the four-dimensional twistor transform of Penrose. In any even (euclidean) dimension d = 2n, projective pure spinors parameterize the coset space SO(2n)/U(n), which is the space of all complex structures on ℝ2n. For d = 4 and d = 6, these spaces are ℂℙ1 and ℂℙ3 and the appropriate twistor transforms can easily be constructed. In this paper, we show how to construct the twistor transform for d > 6 when the pure spinor satisfies nonlinear constraints, and present explicit formulas for solutions of the massless field equations. © SISSA/ISAS 2005.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We construct an infinite number of exact time dependent soliton solutions, carrying non-trivial Hopf topological charges, in a 3+1 dimensional Lorentz invariant theory with target space S2. The construction is based on an ansatz which explores the invariance of the model under the conformal group SO(4,2) and the infinite dimensional group of area preserving diffeomorphisms of S2. The model is a rare example of an integrable theory in four dimensions, and the solitons may play a role in the low energy limit of gauge theories. © SISSA 2006.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We consider a field theory with target space being the two dimensional sphere S2 and defined on the space-time S3 × . The Lagrangean is the square of the pull-back of the area form on S2. It is invariant under the conformal group SO(4,2) and the infinite dimensional group of area preserving diffeomorphisms of S2. We construct an infinite number of exact soliton solutions with non-trivial Hopf topological charges. The solutions spin with a frequency which is bounded above by a quantity proportional to the inverse of the radius of S3. The construction of the solutions is made possible by an ansatz which explores the conformal symmetry and a U(1) subgroup of the area preserving diffeomorphism group. © SISSA 2006.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In the presence of a cosmological constant, ordinary Poincaré special relativity is no longer valid and must be replaced by a de Sitter special relativity, in which Minkowski space is replaced by a de Sitter spacetime. In consequence, the ordinary notions of energy and momentum change, and will satisfy a different kinematic relation. Such a theory is a different kind of a doubly special relativity. Since the only difference between the Poincaré and the de Sitter groups is the replacement of translations by certain linear combinations of translations and proper conformal transformations, the net result of this change is ultimately the breakdown of ordinary translational invariance. From the experimental point of view, therefore, a de Sitter special relativity might be probed by looking for possible violations of translational invariance. If we assume the existence of a connection between the energy scale of an experiment and the local value of the cosmological constant, there would be changes in the kinematics of massive particles which could hopefully be detected in high-energy experiments. Furthermore, due to the presence of a horizon, the usual causal structure of spacetime would be significantly modified at the Planck scale. © 2007 American Institute of Physics.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Autonomous robots must be able to learn and maintain models of their environments. In this context, the present work considers techniques for the classification and extraction of features from images in joined with artificial neural networks in order to use them in the system of mapping and localization of the mobile robot of Laboratory of Automation and Evolutive Computer (LACE). To do this, the robot uses a sensorial system composed for ultrasound sensors and a catadioptric vision system formed by a camera and a conical mirror. The mapping system is composed by three modules. Two of them will be presented in this paper: the classifier and the characterizer module. The first module uses a hierarchical neural network to do the classification; the second uses techiniques of extraction of attributes of images and recognition of invariant patterns extracted from the places images set. The neural network of the classifier module is structured in two layers, reason and intuition, and is trained to classify each place explored for the robot amongst four predefine classes. The final result of the exploration is the construction of a topological map of the explored environment. Results gotten through the simulation of the both modules of the mapping system will be presented in this paper. © 2008 IEEE.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Riemann surfaces, cohomology and homology groups, Cartan's spinors and triality, octonionic projective geometry, are all well supported by Complex Structures [1], [2], [3], [4]. Furthermore, in Theoretical Physics, mainly in General Relativity, Supersymmetry and Particle Physics, Complex Theory Plays a Key Role [5], [6], [7], [8]. In this context it is expected that generalizations of concepts and main results from the Classical Complex Theory, like conformal and quasiconformal mappings [9], [10] in both quaternionic and octonionic algebra, may be useful for other fields of research, as for graphical computing enviromment [11]. In this Note, following recent works by the autors [12], [13], the Cauchy Theorem will be extended for Octonions in an analogous way that it has recentely been made for quaternions [14]. Finally, will be given an octonionic treatment of the wave equation, which means a wave produced by a hyper-string with initial conditions similar to the one-dimensional case.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Pós-graduação em Ciências Cartográficas - FCT

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Pós-graduação em Engenharia Elétrica - FEIS