131 resultados para Collision theory model
Resumo:
We study an exactly solvable two-dimensional model which mimics the basic features of the standard model. This model combines chiral coupling with an infrared behavior which resembles low energy QCD. This is done by adding a Podolsky higher-order derivative term in the gauge field to the Lagrangian of the usual chiral Schwinger model. We adopt a finite temperature regularization procedure in order to calculate the non-trivial fermionic Jacobian and obtain the photon and fermion propagators, first at zero temperature and then at finite temperature in the imaginary and real time formalisms. Both singular and non-singular cases, corresponding to the choice of the regularization parameter, are treated. In the nonsingular case there is a tachyonic mode as usual in a higher order derivative theory, however in the singular case there is no tachyonic excitation in the spectrum.
Resumo:
In this work, the plate bending formulation of the boundary element method (BEM), based on the Reissner's hypothesis, is extended to the analysis of plates reinforced by rectangular beams. This composed structure is modelled by a zoned plate, being the beams represented by narrow sub-regions with larger thickness. The integral equations are derived by applying the weighted residual method to each sub-region, and summing them to get the equation for the whole plate. Equilibrium and compatibility conditions are automatically imposed by the integral equations, which treat this composed structure as a single body. In order to decrease the number of degrees of freedom, some approximations are considered for both displacements and tractions along the beam width. The accuracy of the proposed model is illustrated by simple examples whose exact solution are known as well as by more complex examples whose numerical results are compared with a well-known finite element code.
Resumo:
Supersymmetry is already observed in (i) nuclear physics where the same empirical formula based on a graded Lie group described even-even and odd-even nuclear spectra and (ii) in Nambu-BCS theory where there is a simple relationship between the energy gap of the basic fermion and the bosonic collective modes. We now suggest similar relationships between the large number of mesonic and baryonic excitations based on the SU(3) substructure in the U(15/30) graded Lie group.
Resumo:
The theory of vibronic transitions in rare earth compounds is re-examined in the light of a more reliable representation for the ligand field Hamiltonian than the crude electrostatic model. General expressions that take into account the relevant contributions from the forced electric dipole and dynamic coupling mechanisms are derived for the vibronic intensity parameters. These include additional terms, from charge and polarizability gradients, which have not been considered in previous work. Emphasis is given to the relative signs of these various contributions. Under certain approximations these expressions may be conveniently written in terms of accessible ligand field parameters. A comparison with experimental values for the compounds Cs2NaEuCl6 and LiEuF4 is made and satisfactory agreement between theory and experiment is found. A discussion is given on the sensitivity of the calculated intensities to the values of radial integrals, interconfigurational energy differences and ligand field parameters that may be used. Finally, the problem in which a vibronic and an electronic level are in resonance, or near resonance, is analyzed. Suitable expressions to describe the effects of the even-rank components of the vibronic Hamiltonian are obtained. It is found that, depending on the strength of the vibronic interaction and the resonance conditions, the admixture between these two levels may lead to intensities of nearly equal values. © 1995.
Resumo:
We quantize a generalized version of the Schwinger model, where the two chiral sectors couples with different strengths to the U(1) gauge field. Starting from a theory which includes a generalized Wess-Zumino term, we obtain the equal time commutation relation for physical fields, both the singular and non-singular cases are considered. The photon propagators are also computed in their gauge dependent and invariant versions. © 1995 Springer-Verlag.
Resumo:
We discuss non-steady state electrical characteristics of a metal-insulator-metal structure. We consider an exponential distribution (in energy) of impurity states in addition to impurity states at a single energy level within the depletion region. We discuss thermal as well as isothermal characteristics and present an expression for the temperature of maximum current (Tm) and a method to calculate the density of exponentially distributed impurity states. We plot the theoretical curves for various sets of parameters and the variation of Tm, and Im (maximum current) with applied potential for various impurity distributions. The present model can explain the available experimental results. Finally we compare the non-steady state characteristics in three cases: (i) impurity states only at a single energy level, (ii) uniform energetic distribution of impurity states, and (iii) exponential energetic distribution of impurity states.
Resumo:
Nonlocal interactions are an intrinsically quantum phenomenon. In this work we point out that, in the context of heavy ions, such interactions can be studied through the refractive elastic scattering of these systems at intermediate energies. We show that most of the observed energy dependence of the local equivalent bare potential arises from the exchange nonlocality. The nonlocality parameter extracted from the data was found to be very close to the one obtained from folding models. The effective mass of the colliding, heavy-ion, system was found to be close to the nucleon effective mass in nuclear matter.
Resumo:
We review a formalism of superstring quantization with manifest six-dimensional spacetime supersymmetry, and apply it to AdS3 × S3 backgrounds with Ramond-Ramond flux. The resulting description is a conformal field theory based on a sigma model whose target space is a certain supergroup SU′(2|2).
Resumo:
Relying upon the equivalence between a gauge theory for the translation group and general relativity, a teleparallel version of the original Kaluza-Klein theory is developed. In this model, only the internal space (fiber) turns out to be five dimensional, spacetime being kept always four dimensional. A five-dimensional translational gauge theory is obtained which unifies, in the sense of Kaluza-Klein theories, gravitational and electromagnetic interactions. ©2000 The American Physical Society.
Resumo:
We study a field theory formulation of a fluid mechanical model. We implement the Hamiltonian formalism by using the BFFT conjecture in order to build a gauge invariant fluid field theory. We also generalize previous known classical dynamical field solutions for the fluid model. ©2000 The American Physical Society.
Resumo:
We consider the (2+1)-dimensional gauged Thirring model in the Heisenberg picture. In this context we evaluate the vacuum polarization tensor as well as the corrected gauge boson propagator and address the issues of generation of mass and dynamics for the gauge boson (in the limits of QED 3 and Thirring model as a gauge theory, respectively) due to the radiative corrections.
Resumo:
We use relativistic mean field theory, which includes scalar and vector mesons, to calculate the binding energy and charge radii in 125Cs - 139Cs. We then evaluate the nuclear structure corrections to the weak charges for a series of cesium isotopes using different parameters and estimate their uncertainty in the framework of this model.
Resumo:
A nonthermal quantum mechanical statistical fragmentation model based on tunneling of particles through potential barriers is studied in compact two- and three-dimensional systems. It is shown that this fragmentation dynamics gives origin to several static and dynamic scaling relations. The critical exponents are found and compared with those obtained in classical statistical models of fragmentation of general interest, in particular with thermal fragmentation involving classical processes over potential barriers. Besides its general theoretical interest, the fragmentation dynamics discussed here is complementary to classical fragmentation dynamics of interest in chemical kinetics and can be useful in the study of a number of other dynamic processes such as nuclear fragmentation. ©2000 The American Physical Society.
Resumo:
We consider an integrable conformally invariant two-dimensional model associated to the affine Kac-Moody algebra sl3(ℂ). It possesses four scalar fields and six Dirac spinors. The theory does not possesses a local Lagrangian since the spinor equations of motion present interaction terms which are bilinear in the spinors. There exists a submodel presenting an equivalence between a U(1) vector current and a topological current, which leads to a confinement of the spinors inside the solitons. We calculate the one-soliton and two-soliton solutions using a procedure which is a hybrid of the dressing and Hirota methods. The soliton masses and time delays due to the soliton interactions are also calculated. We give a computer program to calculate the soliton solutions. © 2002 Published by Elsevier Science B.V.
Resumo:
We construct explicit multivortex solutions for the complex sine-Gordon equation (the Lund-Regge model) in two Euclidean dimensions. Unlike the previously found (coaxial) multivortices, the new solutions comprise n single vortices placed at arbitrary positions (but confined within a finite part of the plane.) All multivortices, including the single vortex, have an infinite number of parameters. We also show that, in contrast to the coaxial complex sine-Gordon multivortices, the axially-symmetric solutions of the Ginzburg-Landau model (the stationary Gross-Pitaevskii equation) do not belong to a broader family of noncoaxial multivortex configurations.