87 resultados para Cell assay
Resumo:
Objectives: To evaluate the antimicrobial activity of Arctium lappa L. extract on Staphylococcus aureus, S. epidermidis, Streptococcus mutans, Candida albicans, C. tropicalis and C. glabrata. In addition, the cytotoxicity of this extract was analyzed on macrophages (RAW 264.7).Design: By broth microdilution method, different concentrations of the extract (250-0.4 mg/mL) were used in order to determine the minimum microbicidal concentration (MMC) in planktonic cultures and the most effective concentration was used on biofilms on discs made of acrylic resin. The cytotoxicity A. lappa L. extract MMC was evaluated on RAW 264.7 by MTT assay and the quantification of IL-1 beta and TNF-alpha by ELISA.Results: The most effective concentration was 250 mg/mL and also promoted significant reduction (log(10)) in the biofilms of S. aureus (0.438 +/- 0.269), S. epiderrnidis (0.377 +/- 0.298), S. mutans (0.244 +/- 0.161) and C. albicans (0.746 +/- 0.209). Cell viability was similar to 100%. The production of IL-beta was similar to the control group (p > 0.05) and there was inhibition of TNF-alpha (p < 0.01).Conclusions: A. lappa L. extract was microbicidal for all the evaluated strains in planktonic cultures, microbiostatic for biofilms and not cytotoxic to the macrophages. (C) 2014 Elsevier Ltd. All rights reserved.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Processo FAPESP
Resumo:
The importance of this study is based on the need to obtain simple and efficient in vitro models to predict the in vivo toxicity of cosmetics, aiming not to use animals as experimental model. Here, we proposed the use of HepG2 cells, which are widely applied to simulate the hepatic function of the human organism in vitro. This cell line was chose since recent studies have shown that the liver is potentially the most frequently targeted organ by cosmetic ingredients, and beyond that, considering the widely application of in vitro assays to test the cutaneous permeation of cosmetic products, including the assays applying modified Franz cells, this technique becomes indispensable. Three different cosmetic active substances were used, and the toxicity to HepG2 cells was assessed by the MTT method. The treatment with hyaluronic acid showed no toxicity to HepG2 cells. Treating the cells with P. guajava L. extract were verified that increasing the amount of the extract in the media, the cellular viability decreased, and finally, the treatment of alpha-lipoic acid showed a cytoprotective effect in relation to the treatment with propylene glycol. The study demonstrated the suitability in using HepG2 cells to assess the safety of cosmetic active substances, helping in the prediction of if the substance could be hepatotoxic if could reach the bloodstream
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
To evaluate the ability of low time microwaveexposureto inactivate and damage cell membrane integrity of C. albicans. Materials and Methods: Two 200ml C. albicans suspensions were obtained. Sterile dentures were placed in a beaker containing Experimental (ES) or Control suspensions (CS). ES was microwaved at 650 W for 1, 2, 3, 4 or 5 min. Suspensions were optically counted using Methylene blue dye as indicative of membrane-damaged cells; spread on Agar Sabouraud dextrose (ASD) for viability assay; or spectrophotometrically measured at 550nm. Cell-free solutions were submitted to content analyses of protein (Bradford and Pyrogallol red methods); Ca++ (Cresolphthalein Complexone method); DNA (spectrophotometer measurements at 260nm) and K+ (selective electrode technique). Data were analyzed by Student-t test and linear regression (α=0.05). In addition, flowcytometry analysis of Candida cells in suspensionwas performed using propidium iodide. Results: All ES cells demonstrated cell membrane damage at 3, 4 and 5 min,viable cells were nonexistent at 3, 4 and 5 min ES ASD plates and optical density of ES and CS was not significantly differentfor all exposition times. ES cells released highcontents of protein, K+ , Ca++ and DNA after 2 min exposition when compared to that of the CSs. Similar results were observed with flow cytometry analysiswith regard to the periodsof microwave exposure. Conclusions: Microwave irradiation inactivated C. albicansafter 3min and damaged cell membrane integrity after 2 min exposition.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Polyclonal B-cell activation in mice infected by intragastric route with Yersinia enterocolitica O:8
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Colorectal cancer (CRC) is a disease whose genesis may include metabolic dysregulation. Cancer stem cells are attractive targets for therapeutic interventions since their aberrant expansion may underlie tumor initiation, progression, and recurrence. To investigate the actions of metabolic regulators on cancer stem cell-like cells (CSC) in CRC, we determined the effects of soybean-derived bioactive molecules and the anti-diabetes drug metformin (MET), alone and together, on the growth, survival, and frequency of CSC in human HCT116 cells. Effects of MET (60 μM) and soybean components genistein (Gen, 2 μM), lunasin (Lun, 2 μM), β-conglycinin (β-con, 3 μM), and glycinin (Gly, 3 μM) on HCT116 cell proliferation, apoptosis, and mRNA/protein expression and on the frequency of the CSC CD133(+)CD44(+) subpopulation by colonosphere assay and fluorescence-activated cell sorting/flow cytometry were evaluated. MET, Gen, and Lun, individually and together, inhibited HCT116 viability and colonosphere formation and, conversely, enhanced HCT116 apoptosis. Reductions in frequency of the CSC CD133(+)CD44(+) subpopulation with MET, Gen, and Lun were found to be associated with increased PTEN and reduced FASN expression. In cells under a hyperinsulinemic state mimicking metabolic dysregulation and without and with added PTEN-specific inhibitor SF1670, colonosphere formation and frequency of the CD133(+)CD44(+) subpopulation were decreased by MET, Lun and Gen, alone and when combined. Moreover, MET + Lun + Gen co-treatment increased the pro-apoptotic and CD133(+)CD44(+)-inhibitory efficacy of 5-fluorouracil under hyperinsulinemic conditions. Results identify molecular networks shared by MET and bioavailable soy food components, which potentially may be harnessed to increase drug efficacy in diabetic and non-diabetic patients with CRC.