114 resultados para Cardiac function
Resumo:
Background: the effect of food restriction (FR) on myocardial performance has been studied in normal hearts. Few experiments analyzed the effects of undernutrition on hearts subjected to cardiac overload. The aim of this study was to determine whether chronic FR promotes more significant changes in hypertrophied hearts than in normal hearts. Methods: Myocardial performance was studied in isolated left ventricular papillary muscle from young male spontaneously hypertensive rats (SHR) and age-matched normotensive Wistar-Kyoto rats (WKY) submitted to FR or to control diet. The animals subjected to FR were fed 50% of the amount of food consumed by control groups for 60 days. Isolated muscles were studied while contracting isometrically and isotonically. Results: FR decreased the body weight and the left ventricular weight in both groups. FR increased the left ventricular weight-to-body weight ratio in the WKY rats and tended to decrease this ratio in SHR (P = 0.055). The arterial systolic pressure was greater in SHR than in WKY groups and did not change with FR. In the animals with normal diet, myocardial performance was better in SHR than in WKY. FR increased time to tension to fall from peak to 50% of peak tension and time to peak tension in the WKY rats and time to peak tension in the SHR. Conclusions: FR for 60 days has a trend to attenuate the development of cardiac hypertrophy and does not promote more mechanical functional changes in the hypertrophied myocardium than in the normal cardiac muscle.
Resumo:
Background: The main manifestation of hyperglycaemia during pregnancy is gestational diabetes mellitus. It can herald diabetes mellitus type 2 and its deleterious long-term effects, such as hypertension and cardiovascular disease. The aim of this study was to assess diastolic function in women with gestational diabetes mellitus, one of the first signs of future cardiovascular disease.Methods: A total of 21 women with gestational diabetes mellitus and 23 healthy pregnant women (control group) between 34 and 37weeks of gestation underwent echocardiographic assessment. The diagnosis of gestational diabetes mellitus was made in agreement with the American Diabetes Association criteria. Echocardiographic images obtained were analysed according to the criteria of the American Society of Echocardiography. Data were analysed using Pearson correlation coefficient, analysis of variance and Student's t-test.Results: Women with gestational diabetes mellitus had higher posterior wall and interventricular septum thickness, increased left ventricular mass and left ventricular mass index, lower early diastolic annular velocity and early diastolic annular velocity/late diastolic annular velocity ratio. There was a positive correlation between left ventricular mass index and fasting glucose and pregnancy body mass index.Conclusion: Patients with gestational diabetes mellitus seem to have a different diastolic profile as well as a mildly dysfunctional pattern on echocardiogram, which may show a need for greater glycaemic control.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Objective-To evaluate the cardiorespiratory and intestinal effects of the muscarinic type-2 (M-2) antagonist, methoctramine, in anesthetized horses.Animals-6 horses.Procedure-Horses were allocated to 2 treatments in a randomized complete block design. Anesthesia was maintained with halothane (1% end-tidal concentration) combined with a constant-rate infusion of xylazine hydrochloride (1 mg/kg/h, IV) and mechanical ventilation. Hemodynamic variables were monitored after induction of anesthesia and for 120 minutes after administration of methoctramine or saline (0.9% NaCl) solution (control treatment). Methoctramine was given at 10-minute intervals (10 mug/kg, IV) until heart rate (HR) increased at least 30% above baseline values or until a maximum cumulative dose of 30 mug/kg had been administered. Recovery characteristics, intestinal auscultation scores, and intestinal transit determined by use of chromium oxide were assessed during the postanesthetic period.Results-Methoctramine was given at a total cumulative dose of 30 mug/kg to 4 horses, whereas 2 horses received 10 mug/kg. Administration of methoctramine resulted in increases in HR, cardiac output, arterial blood pressure, and tissue oxygen delivery. Intestinal auscultation scores and intestinal transit time (interval to first and last detection of chromium oxide in the feces) did not differ between treatment groups.Conclusions and Clinical Relevance-Methoctramine improved hemodynamic function in horses anesthetized by use of halothane and xylazine without causing a clinically detectable delay in the return to normal intestinal motility during the postanesthetic period. Because of their selective positive chronotropic effects, M-2 antagonists may represent a safe alternative for treatment of horses with intraoperative bracycardia.
Resumo:
Objective-To evaluate cardiopulmonary effects of glycopyrrolate in horses anesthetized with halothane and xylazine.Animals-6 horses.Procedure-Horses were allocated to 2 treatment groups in a randomized complete block design. Anesthesia was maintained in mechanically ventilated horses by administration of halothane (1% end-tidal concentration) combined with a constant-rate infusion of xylazine hydrochloride (1 mg/kg/h, IV). Hemodynamic variables were monitored after induction of anesthesia and for 120 minutes after administration of glycopyrrolate or saline (0.9% NaCl) solution. Glycopyrrolate (2.5 mug/kg, IV) was administered at 10-minute intervals until heart rate (HR) increased at least 30% above baseline or a maximum cumulative dose of 75 mug/kg had been injected. Recovery characteristics and intestinal auscultation scores were evaluated for 24 hours after the end of anesthesia.Results-Cumulative dose of glycopyrrolate administered to 5 horses was 5 mug/kg, whereas 1 horse received 75 mug/kg. The positive chronotropic effects of glycopyrrolate were accompanied by an increase in cardiac output, arterial blood pressure, and tissue oxygen delivery. Whereas HR increased by 53% above baseline values at 20 minutes after the last glycopyrrolate injection, cardiac output and mean arterial pressure increased by 38% and 31%, respectively. Glycopyrrolate administration was associated with impaction of the large colon in I horse and low intestinal auscultation scores lasting 24 hours in 3 horses.Conclusions and Clinical Relevance-The positive chronotropic effects of glycopyrrolate resulted in improvement of hemodynamic function in horses anesthetized with halothane and xylazine. However, prolonged intestinal stasis and colic may limit its use during anesthesia.
Resumo:
Introduction. The postoperative acute renal failure (ARF) incidence in different kinds of surgery has rarely been studied. Age, cardiac dysfunction, previous renal dysfunction, intraoperative hypoperfusion, and use of nephrotoxic medications are mentioned as risk factors for ARF at the postoperative period. The postoperative ARF definition was based on the creatinine increase by the RIFLE classification (R = risk, I = injury, F = failure, L = loss, E = end stage), which corresponds to a 1.5 creatinine increase, two to three times, respectively, above the basal value. This study aimed to evaluate the postoperative ARF incidence in elderly patients who underwent femur fracture surgery under subarachnoid anesthesia and stratify it by the RIFLE criteria. Methods. Ninety patients older than 65 years under spinal anesthesia with fixed dosage of 15 mg of 0.5% isobaric bupivacaine associated with morphine 50 g were studied. Immediate postoperative creatinine was considered basal and compared with maximal creatinine evaluated at 24, 48, and 72 postoperative hours. Results. The mean age of the patients was 80.27 years. ARF incidence was 24.44% and stratified this way: R = 21.11% and I = 3.33%. Conclusions. In conclusion, the postoperative ARF incidence after femur fracture surgery in patients over 65 years was 24.44%. By analyzing the stratification based on the RIFLE classification, the incidence was categorized as Risk (R) = 21.11% and Injury (I) = 3.33%.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
In this study we assessed the mechanical function of isolated left ventricular papillary muscles from 60 day-old male Wistar-Kyoto rats (WKY) subjected to different periods of food restriction (FR). The food-restricted animals (R) were fed 50% of the amount of diet consumed by the ad Libitum-fed rats (C). The cardiac muscles were studied after 30, 60, and 90 days (R-30, R-60 and R-90) of FR. The effect of FR on myocardial collagen concentration was also evaluated. The parameters from the three control groups that were statistically identical were combined and the control pool group (CP) was formed. The left ventricular weight-to-body weight ratio was lower in the R-30 and higher in the R-60 and R-90 in relation to their control groups. Hydroxyproline concentration was higher only in R-90 compared to CP and R-30. Myocardial mechanical function was the same in the C groups. The comparisons between CP and FR groups showed that: the muscles of R-30 presented increased resting tension and maximum rate of tension decline, and decreased velocity of shortening; the muscles of R-60 and R-90 groups showed a prolongation of the time to peak tension (TPT) and the time to peak shortening (TPS); and R-30 had an increased time from peak tension to 50% relaxation (RT1/2). Increases in TPT, TPS, and RT1/2 in groups R-60 and R-90 were significant in relation to R-30. In conclusion, while FR for 30 days produces disparate effects on myocardial performance, FR for 60 and 90 days prolongs the contraction period. The change of relaxation time in R-90 might be related to the increased myocardial collagen content. (C) 2001 Elsevier B.V. All rights reserved.
Resumo:
The aging spontaneously hypertensive rat (SHR) is a model in which the transition from chronic stable left ventricular hypertrophy to overt heart failure can be observed. Although the mechanisms for impaired function in hypertrophied and failing cardiac muscle from the SHR have been studied, none accounts fully for the myocardial contractile abnormalities. The cardiac cytoskeleton has been implicated as a possible cause for myocardial dysfunction. If an increase in microtubules contributes to dysfunction, then myocardial microtubule disruption by colchicine should promote an improvement in cardiac performance. We studied the active and passive properties of isolated left ventricular papillary muscles from 18- to 24-month-old SHR with evidence of heart failure (SHR-F, n=6), age-matched SHR without heart failure (SHR-NF, n=6), and age-matched normotensive Wistar-Kyoto rats (WKY, n=5). Mechanical parameters were analyzed before and up to 90 minutes after the addition of colchicine (10(-5), 10(-4), and 10(-3) mol/L). In the baseline state, active tension (AT) developed by papillary muscles from the WKY group was greater than for SHR-NF and SHR-F groups (WKY 5.69+/-1.47 g/mm(2) [mean+/-SD], SHR-NF 3.41+/-1.05, SHR-F 2.87+/-0.26; SHR-NF and SHR-F P<0.05 versus WKY rats). The passive stiffness was greater in SHR-F than in the WKY and SHR-NF groups (central segment exponential stiffness constant, K-cs: SHR-F 70+/-25, SHR-NF 44+/-17, WKY 41+/-13 [mean+/-SD]; SHR-F P<0.05 versus; SHR-NF and WKY rats). AT did not improve after 10, 20, and 30 minutes of exposure to colchicine (10(-5), 10(-4), and 10(-3) mol/L) in any group. In the SHR-F group, AT and passive stiffness did not change after 30 to 90 minutes of colchicine exposure (10(-4) mol/L). In summary, the data in this study fail to demonstrate improvement of intrinsic muscle function in SHR with heart failure after colchicine. Thus, in the SHR there is no evidence that colchicine-induced cardiac microtubular depolymerization affects the active or passive properties of hypertrophied or failing left ventricular myocardium.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)