165 resultados para Cardiac asynchronism
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Studies on conjugated linoleic acid ingestion and its effect on cardiac tissue are necessary for the safe utilization of this compound as supplement for weight loss. Male Wistar 24-rats were divided into four groups (n = 6):(C)given standard chow, water and 0.5 ml saline, twice a week by gavage; (C-CLA)receiving standard chow, water and 0.5 ml of conjugated linoleic acid, twice a week, by gavage; (S)given standard chow, saline by gavage, and 30% sucrose in its drinking water; (S-CLA)receiving standard chow, 30% sucrose in its drinking water and conjugated linoleic acid. After 42 days of treatment S rats had obesity with increased abdominal-circumference, dyslipidemia, oxidative stress and myocardial lower citrate synthase(CS) and higher lactate dehydrogenase(LDH) activities than C. Conjugated linoleic acid had no effects on morphometric parameters in C-CLA, as compared to C, but normalized morphometric parameters comparing S-CLA with S. There was a negative correlation between abdominal adiposity and resting metabolic rate. Conjugated linoleic acid effect, enhancing fasting-VO2/surface area, postprandial-carbohydrate oxidation and serum lipid hydroperoxide resembled to that of the S group. Conjugated linoleic acid induced cardiac oxidative stress in both fed conditions, and triacylglycerol accumulation in S-CLA rats. Conjugated linoleic acid depressed myocardial LDH comparing C-CLA with C, and beta-hydroxyacyl-coenzyme-A dehydrogenase/CS ratio, comparing S-CLA with S. In conclusion, dietary conjugated linoleic acid supplementation for weight loss can have long-term effects on cardiac health. Conjugated linoleic acid, isomers c9, t11 and t10, c12 presented undesirable pro-oxidant effect and induced metabolic changes in cardiac tissue. Nevertheless, despite its effect on abdominal adiposity in sucrose-rich diet condition, conjugated linoleic acid may be disadvantageous because it can lead to oxidative stress and dyslipidemic profile. (c) 2007 Elsevier B.V All rights reserved.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Two groups of white mice (Mus musculus) were infected with 65 and 440 cercariae transcutaneously. Migration of Schistosoma mansoni from skin to the lungs and to the portal system thereafter was studied through fitting mathematical equations. Six evolutive stages previously defined were used to determine the asynchronic development of parasites in the portal system. Equations the moment of maximum schistosomula recovery in skin and lungs. In the portal system the equations lead to different days of maximum recovery according to each stage. These differences measure quantitatively the asynchronism of S. mansoni.
Resumo:
Histamine release from guinea pig heart treated with compound 48/80 was potentiated by the cyclooxygenase inhibitors indomethacin and piroxicam but not by aspirin or phenylbutazone. This differential effect suggests that the potentiation is not merely due to an inhibition of prostaglandin synthesis. Piroxicam potentiated the histamine release induced by cardiac anaphylaxis whereas indomethacin reduced this effect. The SRS-A antagonist FPL 55712 inhibited histamine release induced by cardiac anaphylaxis, but not that evoked by compound 48/80, and also prevented the potentiation due to indomethacin and piroxicam. In total, these data suggest that the potentiation of histamine release by piroxicam and indomethacin is probably due to a diversion of arachidonic acid metabolism from the cyclooxygenase to the lipoxygenase pathways. The resulting lipoxygenase products may then regulate histamine release, with the secretion due to antigen being more sensitive to such modulation than that evoked by compound 48/80.
Resumo:
The relationship between coronary sinus blood oxygen tension (CSPO 2) and myocardial oxygen tension (MPO 2) variations during cardiac ischemia and reperfusion was studied in anesthetized open-chest dogs. Oxygen tension was measured by a polarographic method. Ischemia resulted in a slightly decreased CSPO 2 and a more pronounced reduction of MPO 2. After reperfusion the CSPO 2 rose rapidly and transiently before it returned gradually to the control level. By contrast, during the recovery period, the MPO 2 increased slowly, with recovery occurring long after the peak of CSPO 2. These data suggest that during the reperfusion phase, the CSPO 2 variation is probably due to opening of the myocardial arteriovenous shunts instead of an increase of flow through the myocardial capillary bed.
Resumo:
1. 1. The mechanisms behind cardiac control were investigated in the South American lungfish, Lepidosiren paradoxa, using fish with chronically implanted cannulae and electromagnetic flow probes. In addition, a preliminary study was made of the cardiovascular events associated with air breathing. 2. 2. The study suggests that the heart of Lepidosiren is controlled by cholinergic vagal fibres which, in some animals, exert a tonic influence in the resting fish. Cyclic changes in heart rate in association with air breaths is due to modulation of this cholinergic tonus. 3. 3. In addition to the variable cholinergic tonus, there appears to be a relatively stable adrenergic tonus on the heart, which causes an elevated heart rate. The adrenergic tonus is likely to be due to local release of catecholamines from endogenous chromaffin cells within the atrium. 4. 4. Preliminary results suggest that pulmonary arterial flow increases by about 50% immediately following an air breath. The mechanism behind this increase probably involves both an elevation of the heart rate and a redistribution of blood flow into the pulmonary circuit. © 1989.
Resumo:
The incidence of cardiovascular disease has increased in the general population, and cardiac damage is indicated as one important cause of mortality. In addition, pollution and metal exposure have increased in recent years. For this reason, toxic effects of metals, such as nickel, and their relation to cardiac damage should be urgently established. Although free radical-mediated cellular damage and reactive oxygen species have been theorized as contributing to the nickel mechanism of toxicity, recent investigations have established that free radicals may be important contributors to cardiac dysfunction. However, there is little information on the effect of nickel exposure on markers of oxidative stress in cardiac tissue. Nickel exposure (Ni2+ 100 mg L-1 from NiSO4) significantly increased lipoperoxide and total lipid concentrations in cardiac tissue. We also observed increased serum levels of cholesterol (59%), lactate dehydrogenase (LDH-64%), and alanine transaminase (ALT-30%) in study animals. The biochemical parameters recovered to the control values with tocopherol intake (0.2 mg 200 g-1). Vitamin E alone significantly decreased the lipoperoxide concentration and increased superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px) activities in the heart. Since no alterations were observed in catalase and GSH-Px activities by nickel exposure while SOD activities were decreased, we conclude that superoxide radical (O2 -) generated by nickel exposure is of primary importance in the pathogenesis of cardiac damage. Tocopherol, by its antioxidant activity, decreased the toxic effects of nickel exposure on heart of rats.
Resumo:
The presence of toxic substances in the workplace environment requires systematic evaluation of exposure and health status in exposed subjects. Cadmium is a highly toxic element found in water. Although free mediated cellular damage and reactive oxygen species (ROS), had been theorized as contributing to the cadmium mechanism of toxicity, and recent investigations have established that free radicals may be important contributors to cardiac dysfunction, there is little information on the effect of cadmium exposure on markers of oxidative stress in cardiac tissue. Cadmium exposure (Cd2+ - 100 mg/1-from CdCl2) in drinking water, during 15 days, significantly increased lipoperoxide and decreased the activities of superoxide dismutase and glutathione peroxidase. No alterations were observed in catalase activity in heart of rats with cadmium exposure. We also observed decreased glycogen and glucose concentration and increased total lipid content in cardiac tissue of rats with cadmium exposure. The decreased activities of alanine transaminase and aspartate transaminase reflected decreased metabolic protein degradation, and increased lactate dehydrogenase activity was related with increases in capacity of glycolysis. Since the metabolic pathways were altered by cadmium exposure, we can conclude that Cd2+ exposure induced ROS and initiate some series of events that occur in the heart and resulted in metabolic pathways alterations.
Resumo:
Patients with chronic heart failure (CHF) may develop a wasting syndrome, termed cardiac cachexia. This condition should be diagnosed when weight loss of more than 7.5% of the premorbid normal weight occurs over a time period of more than 6 months. Although the pathophysiologic causes of body wasting in patients with CHF remain unclear, studies have suggested that reduction of the dietary ingestion, intestinal malabsorption of nutrients, increased resting metabolic rates, and humoral neuroendocrine and immunologic abnormalities may play a role. The development of cachexia in the patients with CHF results in clinical symptoms, adverse consequences on the heart, and impaired survival.
Resumo:
Purpose: To determine whether a high energy dense diet intake increases oxidative stress and alters antioxidant enzymes in cardiac tissue. Design: A randomized, controlled study. Ninety-day-old female rats were randomly divided into two groups: one fed with a low energy dense diet (LE; 3.0 kcal g-1) and one with a high energy dense diet (HE; 4.5 kcal g-1). Materials and Methods: After 8 weeks of treatment, the animals were fasted overnight and sacrificed by decapitation. The serum was used for glucose, triacylglycerol, cholesterol, low-density lipoprotein (LDL)-cholesterol and high-density lipoprotein (HDL)-cholesterol determinations. The glycogen, lipoperoxide, lipid hydroperoxide, superoxide dismutase, glutathione peroxidase, lactate dehydrogenase, citrate synthase, total and non-protein sulphhydryl groups were determined in cardiac tissue. Results: HE decreased the myocardial glycogen content and increased the lactate dehydrogenase/citrate synthase ratio, indicating an increased glycolytic pathway and a shift from myocardial aerobic metabolism. HE-treated female rats showed increased lipoperoxide and hydroperoxide levels in cardiac tissue. Although no alterations were observed in the total sulphhydryl group and superoxide dismutase activities, glutathione peroxidase and the non-protein sulphhydryl group were significantly decreased in HE-treated animals. Conclusions: Although no alterations were observed in energy intake, HE induced an increased intake of fat and carbohydrate and an increased rate of weight gain. HE intake induced alterations in markers of oxidative stress in cardiac tissue. Hydrogen peroxide is an important toxic intermediate in the development of cardiac oxidative stress by HE. The specific nutrient content, such as fat and carbohydrate, rather than caloric intake, appears to be the main process inducing oxidative stress in HE-treated female rats.
Resumo:
There still controversy about the relation between changes in myocardial contractile function and global left ventricular (LV) performance during stable concentric hypertrophy. To clarify this, we analyzed LV function in vivo and myocardial mechanics in vitro in rats with pressure overload-induced cardiac hypertrophy. Male Wistar rats (70 g) underwent ascending aorta stenosis for 8 weeks (group AAS, n=9). LV performance was assessed by transthoracic echocardiography under light anesthesia. Myocardial function was studied in isolated papillary muscle preparation during isometric contraction. The data were compared with age- and sex-matched sham-operated rats (group C, n=9). LV weight-to-body weight ratio (C: 2.0 ± 0.5 mg/g; AAS: 3.3 ± 0.7 mg/g), LV relative wall thickness (C: 0.19 ± 0.02; AAS; 0.34 ± 0.10), and LV fractional shortening (C: 54 ± 5%; AAS: 70 ± 8%) were increased in the group AAS (p<0.05). Echocardiographic analysis also indicated a significant association (r=0.74; p<0.001) between percent fractional shortening and LV relative wall thickness. The performance of AAS isolated muscle revealed that active tension (C: 6.6 ± 1.7 g/mm 2; AAS: 6.5 ± 1.5 g/mm 2) and maximum rate of tension development (C: 69 ± 21 g/mm 2/s; AAS: 69 ± 18 g/mm 2) were not significantly different from group C (p>0.05). In conclusion: 1) Compensated pressure-overload myocardial hypertrophy is associated with preserved myocardial function and increased ventricular performance; 2) The improved LV function might be due to the ventricular remodeling characterized by an increased relative wall thickness. Copyright © 2002 By PJD Publications Limited.