162 resultados para Carboxymethyl chitosan
Resumo:
A polymer analogous synthesis involving the reductive amination of phosphorylcholine (PC)-glyceraldehyde with primary amines of deacetylated chitosan (M-w approximate to 57000 g mol(-1)) was used to prepare phosphorylcholine-substituted chitosans (PC-CH) with a degree of substitution (DS) ranging from similar to 11 to similar to 53 mol% PC-substituted glucosamine residues. The PC-CH derivatives were characterized by H-1 NMR spectroscopy, FTIR spectroscopy, and multiangle laser light scattering gel permeation chromatography (MALLS-GPC). The pKa of the PC-substituted amine groups (pKa approximate to 7.20) was determined by H-1 NMR titration. The PC-CH samples (1.0 g L-1) were shown to be nontoxic using an MTT assay performed with human KB cells. Aqueous solutions of PC-CH samples (4.0 g L-(1)) of DS g 22 mol% PC-substituted glucosamine residues remained clear, independently of pH (4.0 < pH < 11.0). The remarkable water solubility and nontoxicity displayed by the new PC-CH samples open up new opportunities in the design of chitosan-based biomaterials and nanoparticles.
Resumo:
Rheological characteristics of gels were studied, with the focus on their use as a cosmetic base. Some ideal characteristics can be predicted by the rheological characterization, such as the performance, with easy application and without dripping or forming lumps and bubbles. Moreover, it is possible to detect signs of physical instability. The gels were prepared with sodium carboxymethyl cellulose 3% and 5%, with Carbopol 940 (INCI: Carbomer) and with Carbopol Ultrez (INCI: Acrylates/C10-30 alkyl acrylate crosspolymer). The tests performed were yield stress, stress sweep and creep and recovery. The gel with 3% of sodium carboxymethyl cellulose presented the most appropriated behavior and can be indicated as the most suitable cosmetic base.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Due to an increasing interest, a vast number of biodegradable polymers have been obtained recently. Polymers naturally produced, such as cellulose, starch, chitosan and alginate, represent biodegradable materials, with low toxicity and low cost. Among polysaccharides, chitosan has been of great interest of the industrial and academic research, due to its special qualities of biodegradability and biocompatibility and, on the other hand, to the versatility of its use in several physical forms and products. A significant growth in the development of new dosage forms capable to deliver the drug in a controlled and targeted way has been observed in these last years. Such pharmaceutical forms search, mainly, the reduction of the dose administered and of the administration frequency, the reduction of adverse side effects and, consequently, a better patient compliance. The present paper describes the use of chitosan in pharmaceutical products, especially in drug controlled delivery systems.
Resumo:
The aim of this work was to evaluate apples covered with chitosan during storage at ambient temperature. 'Royal Gala' apples were covered with chitosan (MRQ), immersed in acetic acid solution (MB) or did not receive any treatment (MC) and subsequently analyzed physicochemical, sensorial andinstrumentally, as well as for rotten occurrence, at zero, 7, 14, 21, 28, 35, 42 and 46 days of storage. The ratio, pH and reducing sugar contents increased while total titratable acidity, total sugars, total solids and firmness were reduced during storage. Was observed a drastically reduction of ascorbic acid and slight increase on soluble solids, except in the apples that were not pretreated (MC). Luminosity and chromaticity ratio values improved with time, with higher intensity in MRQ. Rotten occurrence was not expressive. The acceptance of appearance, color, global impression, aroma and flavor decreased with time, and appearance and texture were considered the most important sensory attributes for apples. The use of chitosan delayed ripening, reduced losses in firmness and presented a more intense bright, extending shelf life period up to seven days.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Breast cancer is a public health problem throughout the world. Moreover, breast cancer cells have a great affinity for hydroxyapatite, leading to a high occurrence of bone metastasis. In this work we developed a bio-nanocomposite (bio-NCP) in order to use such affinity in the diagnosis and treatment of breast cancer. The bio-NCP consists of magnetic nanoparticles of Mn and Zn ferrite inside a polymeric coating (chitosan) modified with nanocrystals of apatite. The materials were characterized with synchrotron X-ray Powder Diffraction (XPD), Time-of-Flight Neutron Powder Diffraction (NPD), Fourier Transformed Infra-red Spectroscopy (FTIR), Scanning Electron Microscopy (SEM) and magnetic measurement with a Physical Property Measurement System (PPMS). We obtained ferrite nanoparticles with a high inversion degree of the spinel structure regarding the Fe and Mn, but with all the Zn in the A site. The coating of such nanoparticles with chitosan had no notable effects to the ferrite microstructure. In addition, the polymeric surface can be easily modified with apatite nanocrystals since the hydration of the bio-NCP during synthesis can be controlled. The resulting bio-NCP presents a spherical shape with a narrow size distribution and high magnetic response at room temperature and is a very promising material for early diagnosis of breast cancer and its treatment. © 2013 Elsevier B.V.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Pós-graduação em Pesquisa e Desenvolvimento (Biotecnologia Médica) - FMB
Resumo:
Pós-graduação em Pesquisa e Desenvolvimento (Biotecnologia Médica) - FMB
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)