92 resultados para Brane Dynamics in Gauge Theories
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
We explore here the issue of duality versus spectrum equivalence in dual theories generated through the master action approach. Specifically we examine a generalized self-dual (GSD) model where a Maxwell term is added to the self-dual model. A gauge embedding procedure applied to the GSD model leads to a Maxwell-Chern-Simons (MCS) theory with higher derivatives. We show here that the latter contains a ghost mode contrary to the original GSD model. By figuring out the origin of the ghost we are able to suggest a new master action which interpolates between the local GSD model and a nonlocal MCS model. Those models share the same spectrum and are ghost free. Furthermore, there is a dual map between both theories at classical level which survives quantum correlation functions up to contact terms. The remarks made here may be relevant for other applications of the master action approach. © SISSA 2006.
Resumo:
Some years ago, it was shown how fermion self-interacting terms of the Thirring-type impact the usual structure of massless two-dimensional gauge theories [1]. In that work only the cases of pure vector and pure chiral gauge couplings have been considered and the corresponding Thirring term was also pure vector and pure chiral respectively, such that the vector ( or chiral) Schwinger model should not lose its chirality structure due to the addition of the quartic interaction term. Here we extend this analysis to a generalized vector and axial coupling both for the gauge interaction and the quartic fermionic interactions. The idea is to perform quantization without losing the original structure of the gauge coupling. In order to do that we make use of an arbitrariness in the definition of the Thirring-like interaction.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Using the functional integral formalism for the statistical generating functional in the statistical (finite temperature) quantum field theory, we prove the equivalence of many-photon Greens functions in the Duffin-Kennner-Petiau and Klein-Gordon-Fock statistical quantum field theories. As an illustration, we calculate the one-loop polarization operators in both theories and demonstrate their coincidence.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
The problem of a spacecraft orbiting the Neptune-Triton system is presented. The new ingredients in this restricted three body problem are the Neptune oblateness and the high inclined and retrograde motion of Triton. First we present some interesting simulations showing the role played by the oblateness on a Neptune's satellite, disturbed by Triton. We also give an extensive numerical exploration in the case when the spacecraft orbits Triton, considering Sun, Neptune and its planetary oblateness as disturbers. In the plane a x I (a = semi-major axis, I = inclination), we give a plot of the stable regions where the massless body can survive for thousand of years. Retrograde and direct orbits were considered and as usual, the region of stability is much more significant for the case of direct orbit of the spacecraft (Triton's orbit is retrograde). Next we explore the dynamics in a vicinity of the Lagrangian points. The Birkhoff normalization is constructed around L-2, followed by its reduction to the center manifold. In this reduced dynamics, a convenient Poincare section shows the interplay of the Lyapunov and halo periodic orbits, Lissajous and quasi-halo tori as well as the stable and unstable manifolds of the planar Lyapunov orbit. To show the effect of the oblateness, the planar Lyapunov family emanating from the Lagrangian points and three-dimensional halo orbits are obtained by the numerical continuation method. Published by Elsevier Ltd. on behalf of COSPAR.
Resumo:
We prove the equivalence of many-gluon Green's functions in the Duffin-Kemmer-Petieu and Klein-Gordon-Fock statistical quantum field theories. The proof is based on the functional integral formulation for the statistical generating functional in a finite-temperature quantum field theory. As an illustration, we calculate one-loop polarization operators in both theories and show that their expressions indeed coincide.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Conformal supergravity arises in presently known formulations of twistor-string theory either via closed strings or via gauge-singlet open strings. We explore this sector of twistor-string theory, relating the relevant string modes to the particles and fields of conformal supergravity. We use the twistor-string theory to compute some tree level scattering amplitudes with supergravitons. Since the supergravitons interact with the same coupling constant as the Yang-Mills fields, conformal supergravity states will contribute to loop amplitudes of Yang-Mills gluons in these theories. Those loop amplitudes will therefore not coincide with the loop amplitudes of pure super Yang-Mills theory. © SISSA/ISAS 2004.
Resumo:
We construct an infinite number of exact time dependent soliton solutions, carrying non-trivial Hopf topological charges, in a 3+1 dimensional Lorentz invariant theory with target space S2. The construction is based on an ansatz which explores the invariance of the model under the conformal group SO(4,2) and the infinite dimensional group of area preserving diffeomorphisms of S2. The model is a rare example of an integrable theory in four dimensions, and the solitons may play a role in the low energy limit of gauge theories. © SISSA 2006.
Resumo:
Traditional Monte Carlo simulations of QCD in the presence of a baryon chemical potential are plagued by the complex phase problem and new numerical approaches are necessary for studying the phase diagram of the theory. In this work we consider a ℤ3 Polyakov loop model for the deconfining phase transition in QCD and discuss how a flux representation of the model in terms of dimer and monomer variable solves the complex action problem. We present results of numerical simulations using a worm algorithm for the specific heat and two-point correlation function of Polyakov loops. Evidences of a first order deconfinement phase transition are discussed. © 2013 American Institute of Physics.
Resumo:
Pós-graduação em Física - IFT
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)