151 resultados para BLEND MISCIBILITY


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The ductile-brittle transition temperatures were determined for compatibilized nylon 6/acrylonitrile-butadiene-styrene (PA6/ABS) copolymer blends. The compatibilizers used for those blends were methyl methacrylate-co-maleic anhydride (MMA-MAH) and MMA-co-glycidyl methacrylate (MMA-GMA). The ductile-brittle transition temperatures were found to be lower for blends compatibilized through maleate modified acrylic polymers. At room temperature, the PA6/ABS binary blend was essentially brittle whereas the ternary blends with MMA-MAH compatibilizer were supertough and showed a ductile-brittle transition temperature at -10°C. The blends compatibilized with maleated copolymer exhibited impact strengths of up to 800 J/m. However, the blends compatibilized with MMA-GMA showed poor toughness at room temperature and failed in a brittle manner at subambient temperatures.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Nylon6/ABS binary blends are incompatible and need to be compatibilized to achieve better performance under impact tests. Poly(methyl methacrylate/maleic anhydride) (MMA-MA) is used in this work to compatibilize in situ nylon6/ABS immiscible blends. The MA functional groups, from MMA-MA copolymers, react with NH2 groups giving as products nylon molecules grafted to MMA-MA molecules. Those molecular species locate in the nylon6/ABS blend interfacial region increasing the local adhesion. MMA-MA segments are completely miscible with the SAN rich phase from the ABS. The aim of this work is to study the effects of ABS and compatibilizing agent on the melting and crystallization of nylon6/ABS blends. This effect has been investigated by differential scanning calorimetry (DSC) and dynamic mechanical thermal analysis (DMTA). Incorporation of this compatibilizer and ABS showed little effect on the melting behavior of the PA6 crystalline phase, in general. DMTA analysis confirmed the system immiscibility and showed evidence of compatibility between the two phases, nylon6 and ABS, produced by MMA-MA copolymer presence. The nylon6/ABS blend morphology, observed by transmission electron microscopy (TEM), changes significantly by the addition of the MMA-MA compatibilizer. A better dispersion of ABS in the nylon6 phase is observed. © 2004 Kluwer Academic Publishers.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The mandibular gland secretions of newly emerged, nurse and forager workers, virgin and physogastric queens and males of Melipona bicolor were analyzed by gas chromatography-mass spectrometry. The secretion is composed of a blend of hydrocarbons, alcohols, esters, and acids. The secretion is caste-sex specific and also differs with the tasks performed by the workers and the physiological reproductive condition of the queens.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Nylon6 is an attractive polymer for engineering applications because it has reactive functionality through amine and carboxyl end groups that are capable of reacting. For this reason, it has been used a lot in polymeric blends. Blends of nylon6/ABS (acrylonitrile-butadiene-styrene) were produced using glycidyl methacrylate-methyl methacrylate (GMA-MMA) copolymers as compatibilizer. The binary blends were immiscible and exhibited poor mechanical properties that stemmed from the unfavorable interactions among their molecular segments. This produced an unstable coarse phase morphology and weak interfaces between the phases in the solid state. The presence of the copolymer in the blends clearly led to a more efficient dispersion of the ABS phase and consequently optimized Izod impact properties. However, the compatibilized blend showed poor toughness at room temperature and failed in a brittle manner at subambient temperatures. © 2005 Springer Science + Business Media, Inc.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The incorporation of conducting polymer into a conventional polymer matrix has received attention because of the possibility of combining the good processability and mechanical performance of the conventional polymer with the electrical and optical properties of conducting polymer. In this work, flexible films of polyurethane (PU) and Poli(o-metoxyaniline)(POMA) blends were obtained by casting and investigated using thermally stimulated depolarisation current (TSDC) measurements. Two relaxation peaks were found in the range of-20°C to 90°C. The first one at T=24°C was attributed as α relaxation associated to the glass transition of PU/POMA blend and the second one located at T=60°C can be attributed to space charge.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Looking for the sustainability of a small farming enterprise, the present study focused the benefit of the biodigestor effluent resulting from the anaerobic fermentation of the bovine manure in a soilless melon plant experiment. The research was conducted in Jaboticabal, in the State of Sao Paulo, Brazil, at latitude of 21° 15' 22'' S and a longitude of 48° 18' 58'' W. The melon plant (Cucumis melo L. cv Bonus n° 2) was grown with substrate, seedling obtained in 10/2003. An experimental design was adapted in a randomized block with 16 treatments and 5 replications in a factorial 4 x 4 (4 substrates and 4 nutrient solutions). The 4 substrates were made up of different proportions in volume of the blend composition taking into consideration both the solid part of the biodigestor effluent and the washed raw sand. The 4 nutrient solutions were made up of the liquid part of the biodigestor effluent (biofertilizer) in substitution to the mineral water soluble fertilizers. The addition of the effluent in the sand led to a more rapid vegetative growth, a more precoceous crop with heavier fruits and a much better yield of melon crop. The mineral water soluble fertilizers used in the cultivation of plants in substrates can be partially replaced by the biofertilizer studied.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background: Since only a few data have been published concerning the effects of resinous dental materials on the pulp-dentin complex, the aim of this study was to evaluate the biocompatibility of resin-based materials applied as liners in deep cavities prepared in duman teeth. Methods: After preparing class V cavities, the following dental materials were applied on the axial walls: group 1, Vitrebond™ (VIT; 3M ESPE); group 2, Ultra-Blend® Plus™ (UBP; Untradent); and group 3, Clearfil™ SE Bond (CSEB; Kuraray). In group 4 (control), the hard-setting calcium hydroxide cement Dycal (CH; Caulk/Dentsply) was used. The teeth extracted at 7 days or between 30 and 85 days after the clinical procedures were processed for histological evaluation. Results: For all the experimental and control groups, most of specimens exhibited no pulpal response or slight inflammatory reaction associated with slight tissue disorganization at 7-day period. Moderate inflammatory pulpal response occurred only in one tooth (RDT = 262 μm) of group 3 in which transdentinal diffusion of resin components was observed. Conclusion: The resin-based dental cements VIT and UBP as well as the bonding agent CSEB presented acceptable biocompatibility when applied in deep cavities prepared in sound human teeth. © 2006 Wiley Periodicals, Inc.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The biodegradability of pure diesel and biodiesel and blends with different proportions of biodiesel (2% (commercial); 5% and 20%) was evaluated employing the respirometric method and the redox indicator 2,6-dichlorophenol indophenol (DCPIP) test. In the former, experiments simulating the contamination of natural environments (soil from a petrol station or water from a river) were carried out in Bartha biometer flasks (250 ml), and used to measure the microbial CO 2 production. With the DCPIP test, the capability of three inocula to biodegrade the blends was tested. Results show that although biodiesel is more easily and faster biodegraded than diesel oil, among the blends evaluated (2%, 5% and 20%), only the blend with higher concentration of biodiesel presented biodegradability significantly different from diesel and it was not verified an improvement on the biodegradation of the diesel by means of co-metabolism. © 2008 Academic Journals.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The objective of this study was to evaluate the dynamic performance of an agricultural tractor utilizing distilled biodiesel (50% ethylic + 50% methylic) as a function of the proportion of biodiesel and diesel of petroleum (0 and 100%, 5 and 95%, 15 and 85%, 25 and 75%, 50 and 50%, 75 and 25% and 100 and 0%), respectively. This research was done in the area of the Department of Rural Engineering of the Paulista State University (UNESP), Jaboticabal Campus, SP, located in the latitude 21° 14′ 28″ S and longitude 48° 17′12″ W. A tractor 4 x 2 FWA was used, with a 73.6 kW (100 HP) motor and a ballast tractor. The biodiesel used was produced from spent oil from food frying. The experimental design was entirely randomized, with 7 treatments and 5 repetitions, totaling 35 observations. The results showed that the biodiesel and diesel blend significantly influenced the hourly volumetric consumption, hourly mass consumption, fuel consumption per worked area and specific fuel consumption variables. When the tractor operated with 100% of biodiesel (B100) the specific fuel consumption increased 18% on average in relation to diesel (B0).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Quantification of the effects of adjuvants on droplet behaviour on plant surfaces is needed to improve pesticide spray application efficiency for soybeans. Dispersion and evaporation of single 300-μm diameter droplets amended with each of four spray adjuvants at five concentrations were investigated for four soybean plant surfaces (abaxial and adaxial leaflet surfaces, petiole, basal stem). The four adjuvants were a crop oil concentrate (COC), a modified seed oil (MSO), a non-ionic surfactant (NIS) and an oil surfactant blend (OSB). A single-droplet generator was used to produce and deposit 300-μm diameter droplets on target surfaces under controlled environmental conditions. Adjuvants significantly increased the dispersion (or wetted area) of droplets on plant surfaces. Droplet-wetted areas increased with increased adjuvant concentrations but not in direct proportion. The average increases of wetted areas across the four soybean plant surfaces were 443, 462, 416, or 343% when the spray mixture was amended with COC, MSO, NIS or OSB at the manufacturer-recommended concentrations, respectively. Among the four surfaces, the largest wetted area was on the abaxial surface, followed by the adaxial surface, the petiole and then the basal stem. Droplet evaporation times were inversely proportional to the wetted areas. The evaporation time of 300-μm diameter droplets ranged from 36 to 142. s on the four surfaces when the spray mixture was amended with an adjuvant, whereas the water-only droplets ranged from 161 to 190. s. The results demonstrated that use of adjuvants offers great potential to improve the homogeneity of sprayed pesticides, to increase spray coverage and to reduce pesticide application rates on soybean plants. These effects could benefit farmers economically and reduce environmental contamination by pesticides. © 2012.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The aim of this study was to evaluate the transdentinal cytotoxicity of experimental adhesive systems (EASs) with different hydrophilicity and dentin saturation solutions on odontoblast-like cells. One hundred 0.4-mm-thick dentin discs were mounted in in vitro pulp chambers and assigned to 10 groups. MDPC-23 cells were seeded onto the pulpal side of the discs, incubated for 48 h. The EASs with increasing hydrophilicity (R1, R2, R3 and R4) were applied to the occlusal side after etching and saturation of etched dentin with water or ethanol. R0 (no adhesive) served as controls. R1 is a non-solvated hydrophobic blend, R2 is similar to a simplified etch-and-rinse adhesive system and R3 and R4 are similar to self-etching adhesives. After 24 h, cell metabolism was evaluated by MTT assay (n = 8 discs) and cell morphology was examined by SEM (n = 2 discs). Type of cell death was identified by flow cytometry and the degree of monomer conversion (%DC) was determined by infrared spectroscopy (FTIR) after 10 s or 20 s of photoactivation. Data were analyzed by the Kruskal-Wallis and Mann-Whitney tests (α = 0.05). Dentin saturation with ethanol resulted in higher necrotic cell death ratios for R2, R3 and R4 compared with water saturation, although R2 and R3 induced higher SDH production. Photoactivation for 20 s significantly improved the %DC of all EASs compared with 10 s. A significant positive correlation was observed between the degree of hydrophilicity and %DC. In conclusion, except for R1, dentin saturation with ethanol increased the cytotoxicity of EASs, as expressed by the induction of necrotic cell death. © 2013 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Pós-graduação em Biologia Geral e Aplicada - IBB

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Pós-graduação em Alimentos e Nutrição - FCFAR