92 resultados para Axial loads
Resumo:
Nowadays, the automotive industry is working to optimize the design of engines, in order to reduce the fuel consumption with acceptable efficiency ratio. This undergraduate thesis is aimed at perform a kinematic/dynamic analysis of a slider-crank mechanism that is part of a four stroke internal combustion engine, the same engine that was used in the analysis described by Montazersadhd and Fatemi (2007). Two algorithms were developed based on Kane’s method to calculate velocities and accelerations of the mechanism bodies, and provide the acting forces at connecting rod joints. A SimMechanics model was developed to simulate the engine, and monitoring the same parameters that were calculated with the algorithms. The results obtained with both approaches were satisfactory and showed good agreement with the values provided by Montazersadhd and Fatemi (2007). The obtained results showed that the axial component of the rod joint efforts was caused by the pressure exerted on the piston head,whereas the radial component was related with the action of inertia loads. Besides, this thesis presents a connecting rod assembly mesh that is going to be used for static and fatigue finite element analysis in the future
Resumo:
Bamboo has one of the highest growth rates among plants, however, its lignifications (which confers resistance) takes around a few years and, therefore, certain physical characteristics and mechanical, that depend on this process will only be acquired between the three to six years old. In addition, bamboo also has significant density variations in different parts of the stem, both in the radial direction as the axial. In particular the radial direction, where the density found in the inner and outer (near the bark) of a single stem can range on average from 0.5 to 0.9 g/cm3. Thus, the application of bamboo as a floor, there to examine whether both sides of the bamboo (internal and external), provide resistance properties required for that purpose. In this study sought to characterize and quantify the influence of the concentration of fiber bundles in the inner and outer sides of rules or bamboo strips of bamboo flooring through testing service. Analyses performed were based on ASTM D 2394- 83 for wooden floors and derivatives. This was necessary because of the absence of a specific prohibition of the use and testing of floors made of bamboo and its products. The data were analyzed by ball indentation test shooting, test for resistance to abrasion, indentation test for stress / load treadmill test and by indentation loads applied to small areas - test the jump. The results of the tests were extremely friendly bamboo, even this presents considerable differences between the resistances obtained from assay of the cover of the inner and outer face, being comparable with those of many commonly used to manufacture wood flooring. This comparison was made possible by information from technical trials of several floors made with wood
Resumo:
When materials for application in aircraft structural components are studied, it must be considered that they will be submitted to cyclic loading, and this is an important parameter to design the study in fatigue life of the materials. Whereas, for example, a landing gear operation, the study of fatigue life and corrosion in the materials used in it is essential, especially when you want to use new techniques for surface treatments. The objective is to study the influence of surface treatment of immersion ion implantation nitrogen plasma, in axial fatigue of Stainless steel 15-5 PH in 39-42 HRC condition. Stainless steel 15-5 PH was tested in axial fatigue and corrosion in salt spray. It was also performed microindentation tests, optical microscopy for microstructural analysis and scanning electron microscopy for fractographic analysis. It was observed that the 3IP had no effect on the thickness of the material and not the hardness of it, and still provided a significant increase in fatigue life of the material
Resumo:
Pós-graduação em Odontologia Restauradora - ICT
Resumo:
Pós-graduação em Odontologia Restauradora - ICT
Resumo:
Pós-graduação em Engenharia Mecânica - FEG
Resumo:
The study of short implants is relevant to the biomechanics of dental implants, and research on crown increase has implications for the daily clinic. The aim of this study was to analyze the biomechanical interactions of a singular implant-supported prosthesis of different crown heights under vertical and oblique force, using the 3-D finite element method. Six 3-D models were designed with Invesalius 3.0, Rhinoceros 3D 4.0, and Solidworks 2010 software. Each model was constructed with a mandibular segment of bone block, including an implant supporting a screwed metal-ceramic crown. The crown height was set at 10, 12.5, and 15 mm. The applied force was 200 N (axial) and 100 N (oblique). We performed an ANOVA statistical test and Tukey tests; p < 0.05 was considered statistically significant. The increase of crown height did not influence the stress distribution on screw prosthetic (p > 0.05) under axial load. However, crown heights of 12.5 and 15 mm caused statistically significant damage to the stress distribution of screws and to the cortical bone (p <0.001) under oblique load. High crown to implant (C/I) ratio harmed microstrain distribution on bone tissue under axial and oblique loads (p < 0.001). Crown increase was a possible deleterious factor to the screws and to the different regions of bone tissue. (C) 2014 Elsevier Ltd. All rights reserved.
Resumo:
This study investigated the biomechanical behavior of screwed partial fixed prosthesis supported by implants with different diameters (2.5 mm; 3.3 mm and 3.75 mm) by using a photoelastic analysis. Six photoelastic models were fabricated in PL-2 resin as single crowns or splinted 3-unit piece. Models were positioned in a circular polariscope and 100-N axial and oblique (45 degrees) loads were applied in the occlusal surface of the crowns by using a universal testing machine (EMIC). The stresses were photographically recorded and qualitatively analyzed using a software (Adobe Photoshop). Under axial loading, the number of fringes was inversely proportional to the diameter of the implants in the single crown models. In the splinted 3-unit piece, the 3.75-mm implant promoted lower number of fringes regardless of loading area application. Under oblique loading, a slight increase of fringes number was observed for all groups. The standard implant diameter promoted better stress distribution than the narrow and mini diameter implants. Additionally, the splinted crowns showed a more uniform stress distribution.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Pós-graduação em Engenharia Mecânica - FEG
Resumo:
Pós-graduação em Pesquisa e Desenvolvimento (Biotecnologia Médica) - FMB
Influence of morphological variables in photoelastic models with implants submitted to axial loading
Resumo:
Purpose: This study used 12 photoelastics models with different height and thickness to evaluate if the axial loading of 100N on implants changes the morphology of the photoelastic reflection. Methods: For the photoelastic analysis, the models were placed in a reflection polariscope for observation of the isochromatic fringes patterns. The formation of these fringes resulted from an axial load of 100N applied to the midpoint of the healing abutment attached to the implant with 10.0mm x 3.75mm (Conexão, Sistemas de Próteses, Brazil). The tension in each photoelastic model was monitored, photographed and observed using the software Phothoshop 7.0. For qualitative analysis, the area under the implant apex was measured including the green band of the second order fringe of each model using the software Image Tool. After comparison of the areas, the performance generated by each specimen was defined regarding the axial loading. Results: There were alterations in area with different height and thickness of the photoelastic models. It was observed that the group III (30mm in height) presented the smallest area. Conclusion: There was variation in the size of the areas analyzed for different height and thickness of the models and the morphology of the replica may directly influence the result in researches with photoelastic models.
Resumo:
The aim of this study was to evaluate the influence of implant angulation and abutment type (UCLA and Estheticone) on stress distribution in screw-retained implant-supported prostheses through photoelasticity. Three models were fabricated with photoelastic resin PL-2 (Vishay, Micro-Measurements Group, Inc Raleigh, N.C., USA) containing one external hexagon implant with 3.75x10mm (Master screw, Conexão Sistemas de Prótese Ltda., Arujá, São Paulo) with 0°, 17° and 30° degrees and a screw-retained prostheses with UCLA and Estheticone abutments. The assembly was positioned in a circular polariscope; axial and oblique (45° degrees) loads of 100N were applied in fixed points on the occlusal crown surfaces by a universal testing machine. The stress generated was photographed and analyzed qualitatively with appropriate software (Adobe Photoshop®). The results demonstrated the same number of fringes for both abutment types for each angulation, with fringes increasing in the same way. A higher number of fringes were closer in the oblique loading mode. It was concluded that there was no significant difference in stress distribution in prostheses with UCLA and Estheticone abutments. Higher stress concentrations were observed with increased implant angulation. Stress concentration and intensity were higher in the oblique load than in axial load application.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Pós-graduação em Odontologia Restauradora - ICT