154 resultados para Aquatic fungi
Resumo:
The present study examined the role of branchial and orobranchial O-2 chemoreceptors in the cardiorespiratory responses, aquatic surface respiration (ASR), and the development of inferior lip swelling in tambaqui during prolonged (6 h) exposure to hypoxia. Intact fish (control) and three groups of denervated fish (bilateral denervation of cranial nerves IX+X (to the gills), of cranial nerves V+VII (to the orobranchial cavity) or of cranial nerves V alone), were exposed to severe hypoxia (Pw(O2) = 10 mmHg) for 360 min. Respiratory frequency (fR) and heart rate (fH) were recorded simultaneously with ASR. Intact (control) fish increased fR, ventilation amplitude (V-AMP) and developed hypoxic bradycardia in the first 60 min of hypoxia. The bradycardia, however, abated progressively and had returned to normoxic levels by the last hour of exposure to hypoxia. The changes in respiratory frequency and the hypoxic bradycardia were eliminated by denervation of cranial nerves IX and X but were not affected by denervation of cranial nerves V or V+VII. The VAMP was not abolished by the various denervation protocols. The fH in fish with denervation of cranial nerves V or V+VII, however, did not recover to control values as in intact fish. After 360 min of exposure to hypoxia only the intact and IX+X denervated fish performed ASR. Denervation of cranial nerve V abolished the ASR behavior. However, all (control and denervated (IX+X, V and V+VII) fish developed inferior lip swelling. These results indicate that ASR is triggered by O-2 chemoreceptors innervated by cranial nerve V but that other mechanisms, such as a direct effect of hypoxia on the lip tissue, trigger lip swelling.
Resumo:
We compared the antigenic characteristics of two thermo-dependent dimorphic fungi isolated from soil in Botucatu, an endemic area of paracoccidioidomycosis (PCM) and Paracoccidioides brasiliensis. The soil isolates grew as cerebriform colonies at 37 degrees C (yeast form) and as cottonous colonies at 25 degrees C (mycelial form). No pathogenicity for ddY mice or hamsters were observed. In immunodiffusion test, there were precipitation bands between the 2 soil isolates and pooled PCM patient sera. There were also common precipitation bands at 21, 50 and 58 kDa between the soil isolates antigens and PCM patient sera by Western-blotting, but no gp43 kDa band. No gene for gp43 kDa protein was detected in the soil isolates by PCR. The fact that these isolates were obtained from an endemic area of PCM and there were some antigenic similarities between the soil isolates and P. brasiliensis in immunodiffusion test and Western-blotting may have some importance in epidemiological surveys done with paracoccidioidin as well interfering with the immune response of the exposed population.
Resumo:
This review provides an overview of several molecular and cellular approaches that are likely to supply insights into the host-fungus interaction. Fungi present intra- and/or extracellular host-parasite interfaces, the parasitism phenomenon being dependent on complementary surface molecules. The entry of the pathogen into the host cell is initiated by the fungus adhering to the cell surface, which generates an uptake signal that may induce its cytoplasmatic internalization. Furthermore, microbial pathogens use a variety of their surface molecules to bind to host extracellular matrix (ECM) components to establish an effective infection. on the other hand, integrins mediate the tight adhesion of cells to the ECM at sites referred to as focal adhesions and also play a role in cell signaling. The phosphorylation process is an important mechanism of cell signaling and regulation; it has been implicated recently in defense strategies against a variety of pathogens that alter host-signaling pathways in order to facilitate their invasion and survival within host cells. The study of signal transduction pathways in virulent fungi is especially important in view of their putative role in the regulation of pathogenicity. This review discusses fungal adherence, changes in cytoskeletal organization and signal transduction in relation to host-fungus interaction. (c) 2005 Federation of European Microbiological Societies. Published by Elsevier B.V. All rights reserved.
Resumo:
A method based an ion exchange(IE)-atomic absorption spectrometry(AAS) coupled by flow techniques, allowing the determination of formation constants of, at least, the first species of complex systems, in aqueous solution, was developed.The IE-AAS coupling reduces significantly the number of experimental steps in comparison with IE batch methods, resulting in an important increase in analytical rate. The method is simple both from experimental and computational points of view, making possible its utilization by workers without special expertise in the field of complex equilibria in solution. on the other hand, taking into account mainly the amount of hollow cathode lamps available to date, the developed procedure may be applied, within certain limitations, to the study of many systems whose features prevent the use of traditional approaches.
Enzymatic production by thermophilic fungi using agricultural wastes and ruminant diet as substrates
Resumo:
A survey of the filamentous fungi other than the symbiotic one found in association with Atta sexdens rubropilosa colonies was carried out. Different fungal species (27 taxa) were isolated a few days after treating the workers with toxic baits (sulfluramid; Mirex-SO), from 40 laboratory and 20 field nests. Syncephalastrum racemosum (54 %) and Escovopsis weberi (21 %), Trichoderma harzianum (38 %) and Fusarium oxysporum (23 %) were the prevalent species in laboratory and field nests, respectively. Acremonium kiliense, Acremonium strictum, E. weberi, F oxisporum, Fusarium solani, Moniliella silaveolens and T harzianum were found in both nests' groups. We revealed that many filamentous fungi can co-exist in a dormant state inside the nests of these insects and some of them appear to be tightly associated with this environment.
Resumo:
The influence of water level variation (flood pulse) on the biomass and chemical composition of the aquatic macrophyte Eichhornia azurea, was investigated in a tropical oxbow lake of the Rio Mogi-Guacu, State of São Paulo, Brazil. The flood pulse causes an increase in total nitrogen content from 0.67 to 1.35 mg/L and total phosphorus content from 10.5 to 101.0 mu g/L of the water. This fertilization, associated with other factors, determines a typical seasonal variation in the biomass and chemical composition of the macrophyte.
Resumo:
The indigo dye is extensively used by textile industries and is considered a recalcitrant substance, which causes environmental concern. Chemical products used on textile processing, which affect the environment through effluents, can be voluminous, colored and varied. Vat textile dyes, like indigo, are often used and dye mainly cellulosic fibers of cotton. Decolorization of this dye in liquid medium was tested with ligninolytic basidiomycete fungi from Brazil. Decolorization started in a few hours and after 4 days the removal of dye by Phellinus gilvus culture was in 100%, by Pleurotus sajor-caju 94%, by Pycnoporus sanguineus 91% and by Phanerochaete chrysosporium 75%. No color decrease was observed in a sterile control. Thin layer chromatography of fungi culture extracts revealed only one unknown metabolite of Rf = 0.60, as a result of dye degradation. (C) 2001 Published by Elsevier B.V. B.V.
Resumo:
Labile metal species in aquatic humic substances (HSs) were characterized by ion exchange on cellulose phosphate (CellPhos) by applying an optimized batch procedure. The HSs investigated were pre-extracted from humic-rich waters by ultrafiltration and a resin XAD 8 procedure. The HS-metal species studied were formed by complexation with Cd(II), Ni(II), Cu(II), Mn(II) and Pb(II) as a function of time and the ratio ions to HSs. The kinetics and reaction order of this exchange process were studied. At the beginning (<3 min), the labile metal fractions are separated relatively quickly. After 3 min, the separation of the metal ions proceeds with uniform half-lives of about 12-14 min, revealing rather slow first-order kinetics. The metal exchange between HSs and CellPhos exhibited the following order of metal lability with the studied HSs: Cu > Pb > Mn > Ni > Cd. The required metal determinations were carried out by atomic absorption spectrometry.
Resumo:
The main pool of dissolved organic carbon in tropical aquatic environments, notably in dark-coloured streams, is concentrated in humic substances (HS). Aquatic HS are large organic molecules formed by micro-biotic degradation of biopolymers and polymerization of smaller organic molecules. From an environmental point of view, the study of metal-humic interactions is often aimed at predicting the effect of aquatic HS on the bioavailability of heavy metal ions in the environment. In the present work the aquatic humic substances (HS) isolated from a dark-brown stream (located in an environmental protection area near Cubatao city in São Paulo-State, Brazil) by means of the collector XAD-8 were investigated. FTIR studies showed that the carboxylic carbons are probably the most important binding sites for Hg(II) ions within humic molecules. C-13-NMR and H-1-NMR studies of aquatic HS showed the presence of constituents with a high degree of aromaticity (40% of carbons) and small substitution. A special five-stage tangential-flow ultrafiltration device (UF) was used for size fractionation of the aquatic HS under study and for their metal species in the molecular size range 1-100 kDa (six fractions). The fractionation patterns showed that metal traces remaining in aquatic HS after their XAD-8 isolation have different distributions. Generally, the major percentage of traces of Mn, Cd and Ni (determined by ICP-AES) was preferably complexed by molecules with relatively high molecular size. Cu was bound by fractions with low molecular size and Co showed no preferential binding site in the various humic fractions. Moreover, the species formed between aquatic HS and Hg(II), prepared by spiking (determined by CVAAS), appeared to be concentrated in the relatively high molecular size fraction F-1 (> 100 kDa).
A model for optimal chemical control of leaf area damaged by fungi population - Parameter dependence
Resumo:
We present a model to study a fungi population submitted to chemical control, incorporating the fungicide application directly into the model. From that, we obtain an optimal control strategy that minimizes both the fungicide application (cost) and leaf area damaged by fungi population during the interval between the moment when the disease is detected (t = 0) and the time of harvest (t = t(f)). Initially, the parameters of the model are considered constant. Later, we consider the apparent infection rate depending on the time (and the temperature) and do some simulations to illustrate and to compare with the constant case.
Resumo:
The Atlantic Rainforest is a Brazilian ecosystem that is being rapidly being destroyed, along with the abiotic and biotic factors present in it. Among the biotic factors, the fungi are found in the soil which, besides being of major importance in terms of ecological niches, also have broad and significant applications in biotechnology. In order to assess the biodiversity of these microorganisms in this type of ecosystem, the Banhado Grande region was chosen at the Jureia-Itatins Ecology Station, in the state of São Paulo, Brazil. Within this region, two areas were delimited for study, one covered with natural (primary) vegetation and the other containing vegetation that regenerated following the planting of rice crops, referred to here as secondary. Collection of compound soil samples were taken (depth 0-15 cm) over a period of two and a half years, with the litter first being removed, during dry/cold and humid/hot periods. After sifting the samples, they were appropriately processed using the serial dilution technique to isolate the fungi from the soil. Six different culture media were used, having pHs of 4.5, 7.0 and 9.0. Altogether, 1,211 strains were isolated, divided into the following groups: Hyphomycetes, the most abundant followed by Ascomycetes, Zygomycetes, Coelomycetes, and Oomycetes. From these, 112 species were identified, 8 down to the genus level, and those that did not produce conidia were grouped as Mycelia sterilia. Among the strains, 67 were cellulolytic, 32 originated solely in soil under natural vegetation, and 26 originated solely in soil under secondary vegetation.