131 resultados para Al-cu Alloys


Relevância:

50.00% 50.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

50.00% 50.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

50.00% 50.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

50.00% 50.00%

Publicador:

Resumo:

Pós-graduação em Química - IQ

Relevância:

50.00% 50.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

50.00% 50.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

50.00% 50.00%

Publicador:

Resumo:

The Inoue procedure is used to study the influence of Cr and Cu elements, jointly or individually, on the matrix decomposition of quenched Al-Zn-Mg alloys. The addition of copper and copper with chromium does not significantly change the limits of the temperatures of formation of Guinier-Preston zone and the range of the matrix decomposition. The control of the vacancy concentration in the alloys by different heat treatments and the addition of certain elements such as copper and chromium seems to play an important role in the nucleation rate and the kinetics of phase transformations.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The effect of Fe addition on the microstructural properties and the corrosion resistance of Al-Zn-Mg alloys submitted to different heat treatments (cast, annealed and aged), has been studied in chloride solutions using optical microscopy (OM), scanning electron microscopy (SEM), transmission electron microscopy (TEM), energy-dispersive X-ray (EDX), cyclic polarization (CP) and open circuit potential (o.c.p.) measurements. The presence of 0.3% Fe in the alloy limited the growth of the MgZn2 precipitates, both in the annealed and in the quenched specimens. No effect of Cr on the grain size in the presence of Fe was found because of the accumulation of Cr in the Fe-rich particles. Fe in the Al-Zn-Mg alloys also made them more susceptible to pitting. Pitting occurred mainly near the Fe-rich particles both, under o.c.p. conditions in O-2-saturated solutions and during the CP.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The electrochemical behavior in 0.5 M H2SO4 at 25 degreesC of a Cu-Al(9.3 wt%)-Ag(4.7 wt%) alloy submitted to different heat treatments and an annealed Cu- Al(9.7 wt%)-Ag(34.2 wt%) were studied by means of open circuit potential (E-mix) measurements, potentiodynamic polarizations and cyclic voltammetry. SEM and EDX microanalysis were used to examine the changes caused by the electrochemical perturbations. The steady state potentials observed for the studied samples were correlated in terms of the phases present in the alloys surface. The resulting E/I potentiodynamic profiles were explained in terms of the potentiodynamic behavior of pure copper and pure silver. The presence of aluminum decreased the extent of copper oxidation. In the apparent Tafel potential region, two anodic Tafel slopes were obtained: 40 mV dec(-1) in the low potential region and 130 mV dec(-1) in the high potential region, which were related with the electrochemical processes involving copper oxidation. (C) 2001 Elsevier B.V. Ltd. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The Ag precipitation and dissolution reactions in the Cu-3 wt.% Al-4 wt.% Ag alloy were studied using isothermal and non-isothermal analyses. The activation energy values, obtained for the Ag precipitation reaction indicated that, when the Kissinger, Ozawa and Johnson-MehI-Avrami methods are compared, the Kissinger method is the most appropriate. Although the Johnson-Mehl-Avrami equation often does not fit precipitation data, the energy values obtained for Ag precipitation kinetics are in agreement with what was experimentally observed. For the dissolution reaction of Ag precipitates the activation energy values obtained from the Kissinger and Ozawa methods are higher than that found in the literature for the Ag dissolution in Cu. This discrepancy seems to be related to the fact that the activation energy is influenced by the heating rate. (c) 2006 Elsevier B.V. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The effect of gas tungsten are welding on the microstructure and electrochemical corrosion of Al-Zn-Mg-Fe alloys submitted to different heat treatments (as fabricated, annealed and aged) has been studied using optical microscopy, SEM, TEM, EDX, cyclic voltammetry and corrosion potential measurements in chloride solutions. The electrochemical techniques were very sensitive to the change in the phase compositions produced by welding. Welding caused a decrease in the mean grain size, in the hardness and in the corrosion resistance of the age-hardened alloys. The structure of the latter became strongly altered by welding to lead to phase compositions very close to those of the cold rolled and annealed specimens. (C) 2000 Elsevier B.V. Ltd. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The non-occurrence of the beta' -> (alpha+ gamma(1)) decomposition reaction in the Cu-9 wt.% Al-6 wt.% Ag alloy, on ageing between 200 and 450 degrees C, is discussed considering the influence of Ag on point defects redistribution and energy difference between martensite and the ordered parent phase. (c) 2005 Elsevier B.V All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The electrochemical corrosion and passivation of Al-5Zn-1.7Mg-0.23Cu-0.053Nb alloys, submitted to different heat treatments (cold-rolled, annealed, quenched and aged, and quenched in two steps and aged), in sulphate-containing chloride solutions, has been studied by means of cyclic polarization, electrochemical impedance spectroscopy (EIS), scanning electron microscopy (SEM), energy-dispersive X-ray (EDX), and X-ray photoelectron spectroscopy (XPS). The cyclic polarization curves showed that sulphate addition to the chloride solution produced a poor reproducible shift of the breakdown potential to more positive potentials. The repassivation potentials, much more reproducible, and practically separating the passive from the pitting potential region, were slightly displaced in the negative direction with that addition. When the alloys were potentiodynamically polarized in the passive potential region, sulphate was incorporated in the oxide film, thus precluding chloride ingress. In addition, Zn depletion was favoured, whereas Mg losses were avoided. Different equivalent circuits corresponding to different alloys and potentials in the passive and pitting regions were employed to account for the electrochemical processes taking place in each condition. This work shows that sulphate makes these alloys more sensitive to corrosion, increasing the fracture properties of the surface layer and favouring the pitting attack over greater areas than chloride alone. (C) 2002 Elsevier B.V. Ltd. All rights reserved.