121 resultados para Aircraft turbojet


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Balancing power production and environmental conservation can be problematic. The objective of this study was to investigate the abundance of marsh deer in the Paraná River Basin, above the Sergio Motta (Porto Primavera) Dam, before and after the impact of the dam closure. A fixed-wing, flat window aircraft was used to survey study transects. Observations were recorded based on the distance sampling line transect method, assuming that the detection probability decreases with increased distance. The abundance of marsh deer in the survey region prior to flooding was estimated to be 974 individuals (CV = 0.23). The overall abundance dropped from 974 to 444 (CV = 0.26) individuals after flooding, an overall reduction of 54%. This reduction can be attributed to the direct impact of the flooding process, but it was likely exacerbated by indirect effects, such as increased disease, hunting, and reduction in food availability. Prior to flooding, the marsh deer was distributed widely throughout the dam's catchment area; however, the marsh deer habitat was almost completely destroyed by the flooding process. This situation highlights the need to implement management strategies that ensure the survival of the remaining fragmented population.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The lack of risk management can generate disruption in the supply chain, and there is little literature related to the aerospace industry. This article aims at identifying the risk factors for supply chain of the main Brazilian aircraft manufacturer. Nine risk factors specific to aircraft manufacturers were identified: Environmental, Natural and Political, Supply Chain, Business Strategy, Product Management, Indicators, Organization, Productivity, and Quality and Information System. These factors were quantitatively evaluated with respect to their criticality using the Analytic Hierarchy Process (AHP). The Quality and Productivity factors were considered the most relevant in this study, which can be classified as a single case study. The necessary data were obtained through interviews with professionals from different areas of the studied enterprise.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Pós-graduação em Agronomia (Energia na Agricultura) - FCA

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The 4340 are classified as ultra-high strength steels used by the aviation industry and aerospace applications such as aircraft landing gear and several structural applications, usually in quenched and tempered condition. In this situation occurs reduction of toughness, which encourages the study of multiphasic and bainitic structures, in order to maintain strength without loss of toughness. In this study, ferritic-pearlitic structure was compared to bainitic and martensitic structure, identified by the reagents Nital, LePera and Sodium Metabisulfite. Sliding wear tests of the type pin-on-disk were realized and the results related to the microstructure of these materials and also to their hardnesses. It is noted that these different microstructures had very similar behavior, concluding that all three tested pairs can be used according to the request level.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Since the 1950s, fatigue is the most important project and operational consideration for both civil and military aircrafts. For some aircraft models the most loaded component is one that supports the motor: the Motor Cradle. Because they are considered critical to the flight safety the aeronautic standards are extremely rigorous in manufacturing them by imposing a zero index of defects on the final weld quality (Safe Life), which is 100% inspected by Non-Destructive Testing/NDT. This study has as objective to evaluate the effects of up to four successive TIG welding repairs on the axial fatigue strength of an AISI 4130 steel. Tests were conducted on hot-rolled steel plate specimens, 0.89 mm thick, with load ratio R = 0.1, constant amplitude, at 20 Hz frequency and in room temperature, in accordance with ASTM E466 Standard. The results were related to microhardness and microstructural and geometric changes resulting from welding cycles.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This project was originated from the national aircraft industry requirements to reduce the use of coated materials with electroplated chromium or cadmium that produce waste, which is harmful to health or the environment. The selected material is a Custom 465 stainless steel used in the aeronautical field due to its high mechanical strength. Considering the load sustained by the wheel axis of the landing gear, the Custom 465 is tested in axial fatigue. The objective is to compare the behavior of the Custom 465 with plated AISI 4340 steel coated with cadmium. X-ray diffraction method was used to determine the residual stress field induced by shot peening.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this paper we present a system for aircraft structural health monitoring based on artificial immune systems with negative selection. Inspired by a biological process, the principle of discrimination proper/non-proper, identifies and characterizes the signs of structural failure. The main application of this method is to assist in the inspection of aircraft structures, to detect and characterize flaws and decision making in order to avoid disasters. We proposed a model of an aluminum beam to perform the tests of the method. The results obtained by this method are excellent, showing robustness and accuracy.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This project was originated from the national aircraft industry requirements to reduce the use of coated materials with electroplated chromium or cadmium that produce waste, which is harmful to health or the environment. The selected material is a Custom 465 stainless steel used in the aeronautical field due to its high mechanical strength. Considering the load sustained by the wheel axis of the landing gear, the Custom 465 was tested in axial fatigue. The objective is to compare the behavior of the Custom 465 stainless steel with plated AISI 4340 steel coated with cadmium. Fractographic analysis was conducted using scanning electron microscopy. X-ray diffraction method was used to determine the residual stress field induced by shot peening.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The search for materials with higher properties and characteristics (wear resistance, oxidation, corrosion, etc.) has driven research of various materials. Among the materials that are being studied with such properties and characteristics are super alloys based on nickel which has an important role in the aeronautical, automotive, marine, production of gas turbines and now in space vehicles, rocket engineering , experimental aircraft, nuclear reactors, steam-powered plants, petrochemical and many other applications because besides having all the characteristics and properties mentioned above also have an excellent performance at high temperatures. The super alloy based on nickel studied in this work is the super alloy Pyromet 31v normally used in the manufacture of exhaust valves in common engines and diesel engines of high power by cater requirements such as mechanical strength and corrosion resistance at temperatures of approximately 815 ° C. The objective of this work is to produce results to demonstrate more specific information about the real influence of coatings on cutting tools and cutting fluids in turning and thus promote the optimization of the machining of these alloys. The super alloy Pyromet 31v was processed through turning, being performed with various machining parameters such as cutting speed, feed rate, depth in conditions of Minimum Amount of Fluid (MAF), abundant fluid, cutting tools with coating and without coating in early in his work life and with wear. After turning were obtained several samples of chips and the part generated during the machining process, was measured roughness of the material, subsequently made macrostructural analysis of the tools used order to detect possible wear and microstructural analysis of samples collected being that the latter was used for Optical Microscopy, Scanning Electron Microscopy (SEM) and ... (Complete abstract click electronic access below)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

For engineering projects that require high reliability levels, is often not enough know only physical and chemical material properties. It’s necessary understand the failure mode of these materials in operation to ensure security level in the project and establish more stringent criteria in the analysis of structural integrity. Due to this need, aircraft industry has been using aluminum alloys in their designs and projects. “Currently more than 70% of aircraft structures are built of high strength aluminum alloys among which stand out 7075-T6 and 2024-T3 alloys, which are considered basics for being used in the new alloys development.” (PASTOUKHOV & VOORWALD, 1995). Some years ago ALCOA develops Al 2524 alloy that has emerged as refinement of Al 2024 (Al, Cu. Mg) alloy, with purpose of improve fracture toughness and fatigue resistance on structural components. The present research addresses testing of fatigue crack propagation under variable amplitude loading for Al 2024 alloy, observing the interaction effects from application of overhead blocks and plastic zone at the crack tip and makes an analysis of fracture surface images

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Currently one of the great concerns of the aeronautical industry is in relation to the security and integrity of the aircraft and its equipments / components when under critical flight maneuvers such as during landing / takeoff and emergency maneuvers. The engineers, technicians and scientists are constantly developing new techniques and theories to reduce the design time and testing, ir order to minimize costs. More and more the Finite Element Method is used in the structural analysis of a project as well as theories based on experimental results. This work aimed to estimate the critical load to failure for tensile, compression and buckling of the Tie-Rod, a fixture aircraft widely used on commercial aircrafts. The analysis was performed by finite element method with the assistance of software and by analytical calculations. The results showed that the Finite Element Method provides relative accuracy and convenience in the calculations, indicating critical load values slightly lower than those found analytically for tension and compression. For buckling, the Finite Element Method indicates a critical load very similar to that found analytically following empirical theories, while Euler's theory results in a slightly higher value. The highest risk is to fail by buckling, but the geometric irregularity of Tie-Rod pieces makes difficult the calculations, therefore a practical test must be done before validation of the results