107 resultados para Aeração
Resumo:
Pós-graduação em Agronomia (Energia na Agricultura) - FCA
Resumo:
Pós-graduação em Agronomia (Horticultura) - FCA
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Pós-graduação em Engenharia Mecânica - FEG
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Pós-graduação em Agronomia (Energia na Agricultura) - FCA
Resumo:
The objective of this work was to evaluate the responses of Haematococcus pluvialis cells to the carotenogenesis induction process, under light and nutrition stress. Cells were acclimated during 15 days in WC medium, with aeration with synthetic, filtered atmospheric air and flow rate of 100 mL min-1, light intensity of 50 µmol photons m-2 s-1, photoperiod of 12 hours, and temperature of 23ºC. The following two treatments were compared: cultivation under the described conditions, but with increase of light intensity up to 350 µmol photons m-2 s-1 ; and cultivation under the same conditions as the previous treatment, but with aeration containing 4% CO2. The treatments were done in triplicate, during ten days. With the addition of CO2 and the increment in lighting, an increase was observed in the carotenoids/chlorophyll ratio and cell biomass. Cells stopped dividing on the second day of stress, when nitrate became limiting, and significantly increased their biovolume. The excretion of organic carbon and the concentration of astaxanthin increase in response to the addition of CO2. Stress by light intensity combined with CO2 addition optimizes carotenogenesis in H. pluvialis and increases astaxanthin production.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
The anaerobic treatment of sewage is widely employed in Brazil and it is an appreciated way for the treatment of effluents, helping to reduce the environmental impact in rivers. The methane gas obtained from the process can be applied to improve the energetic efficiency of the system, reducing the amount of waste and the cost of the treatment process. This work presents the net energy balance of anaerobic reactors applied to the treatment of sewage. The analysis was performed considering full-scale and laboratory-scale treatment systems. In laboratory scale, the results from three kinds of systems were compared regarding the biological treatment of greywater. Two of them (UASB7 and UASB12) were anaerobic and the other one was a combined anaerobic-aerobic system (UASB7/SBR6). Greywater methanization (compared to theoretical maximum) was calculated considering 100% removal (g BOD/day), the literature percentage removal and the anionic surfactant presence in the effluentt. For each of these three cases, the efficiencies were, respectively, 16.9%, 43.6% and 51.3% in UASB7 reactor, 25.6%, 50.3% and 59.2% in UASB12 reactor and 30.6%, 61.2% and 71.9% in UASB7/SBR6 reactor. The energetic potential was found to be 4.66x10-4, 7.77x10-4 and 5.12x10-4 kWh/L for the UASB7, UASB12 and UASB7/SBR6 reactors, respectively. The pumping system, the aeration (in the anaerobic-aerobic system) and the temperature controlled heating system were considered to calculate the energetic consumption. However, the third one was not employed since tropical regions like Brazil do not need heating systems and also because of its high energetic consumption. The calculated net energy balance in the reactors was negative in the case of greywater, respectively -0.16, -0.28 and -0.18 kWh/L for the reactors UASB7, UASB12 and UASB7/SRB6. In full scale (ETE Jardim das Flores - Rio Claro, SP), the average energy... (Complete abstract click electronic access below)
Resumo:
The organic wastes need to be adequately managed, in order to avoid the environmental pollution and damage to the public health. So, this work aimed to study the composting process using two methods: manual and mechanized, for the treatment of bovine ruminal waste. This residue is generated in large proportions during the bovine slaughter process, and it can lead environmental degradation and contamination, or even damage to the public health, when not treated. For the initial adjustment of the composting parameters, it was incorporated the residue of coffee husks. The manual composting system was done by the manually aerated piles, while the mechanized composting system was done in a reactor coupled to a compressor that enabled the aeration of the system. The proportions used in both systems were: 90% bovine rumen (R) and 10% coffe husks (CC); 85% bovine rumen and 15% coffe husks; 80% bovine rumen and 20% coffe husks. The parameters determined during the monitoring of the composting process were: temperature, pH, moisture, organic matter, ash, organic carbon, Kjeldahl nitrogen and C/N ratio. The results obtained during the monitoring of the piles and reactors presented similar behavior, except for the parameters Kjeldahl nitrogen and C/N ratio. When compared to the “Instrução Normativa no 25 de 23/07/2009 do Ministério da Agricultura, Pecuária e Abastecimento”, the organic produced composts with the best results were: pile 2 (85% R; 15% CC) and reactors 1 (90% R; 10% CC) e 2 (85% R; 15% CC)