150 resultados para Abelian fields


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The anisotropy of the effective Lande factor in Al(x)Gal(1-x)As parabolic quantum wells under magnetic fields is theoretically investigated. The non-parabolicity and anisotropy of the conduction band are taken into account through the Ogg-McCombe Hamiltonian together with the cubic Dresselhaus spin-orbit term. The calculated effective g factor is larger when the magnetic field is applied along the growth direction. As the well widens, its anisotropy increases sharply and then decreases slowly. For the considered field strengths, the anisotropy is maximum for a well width similar to 50 angstrom. Moreover, this anisotropy increases with the field strength and the maximum value of the aluminum concentration within the quantum well. (C) 2010 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We investigate in this paper the topological stability of pairs (omega, X), where w is a germ of an integrable 1-form and X is a germ of a vector field tangent to the foliation determined by omega.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The construction of Lie algebras in terms of Jordan algebra generators is discussed. The key to the construction is the triality relation already incorporated into matrix products. A generalisation to Kac-Moody algebras in terms of vertex operators is proposed and may provide a clue for the construction of new representations of Kac-Moody algebras in terms of Jordan fields. © 1988.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A construction relating the structures of super Lie and super Jordan algebras is proposed. This may clarify the role played by field theoretical realizations of super Jordan algebras in constructing representations of super Kač-Moody algebras. The case of OSP(m, n) and super Clifford algebras involving independent Fermi fields and symplectic bosons is discussed in detail.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We consider the Hamiltonian reduction of the two-loop Wess-Zumino-Novikov-Witten model (WZNW) based on an untwisted affine Kac-Moody algebra script Ĝ. The resulting reduced models, called Generalized Non-Abelian Conformal Affine Toda (G-CAT), are conformally invariant and a wide class of them possesses soliton solutions; these models constitute non-Abelian generalizations of the conformal affine Toda models. Their general solution is constructed by the Leznov-Saveliev method. Moreover, the dressing transformations leading to the solutions in the orbit of the vacuum are considered in detail, as well as the τ-functions, which are defined for any integrable highest weight representation of script Ĝ, irrespectively of its particular realization. When the conformal symmetry is spontaneously broken, the G-CAT model becomes a generalized affine Toda model, whose soliton solutions are constructed. Their masses are obtained exploring the spontaneous breakdown of the conformal symmetry, and their relation to the fundamental particle masses is discussed. We also introduce what we call the two-loop Virasoro algebra, describing extended symmetries of the two-loop WZNW models.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We investigate higher grading integrable generalizations of the affine Toda systems, where the flat connections defining the models take values in eigensubspaces of an integral gradation of an affine Kac-Moody algebra, with grades varying from l to -l (l > 1). The corresponding target space possesses nontrivial vacua and soliton configurations, which can be interpreted as particles of the theory, on the same footing as those associated to fundamental fields. The models can also be formulated by a hamiltonian reduction procedure from the so-called two-loop WZNW models. We construct the general solution and show the classes corresponding to the solitons. Some of the particles and solitons become massive when the conformal symmetry is spontaneously broken by a mechanism with an intriguing topological character and leading to a very simple mass formula. The massive fields associated to nonzero grade generators obey field equations of the Dirac type and may be regarded as matter fields. A special class of models is remarkable. These theories possess a U(1 ) Noether current, which, after a special gauge fixing of the conformal symmetry, is proportional to a topological current. This leads to the confinement of the matter field inside the solitons, which can be regarded as a one-dimensional bag model for QCD. These models are also relevant to the study of electron self-localization in (quasi-)one-dimensional electron-phonon systems.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this work we discuss the effect of quartic fermion self-interacting terms on the dynamically generated photon masses in 1+1 dimensions, for vector, chiral, and non-Abelian couplings. In the vector and chiral cases we find exactly the dynamically generated mass modified by the quartic term while in the non-Abelian case we find the dynamically generated mass associated with its Abelian part. We show that in the three cases there is a kind of duality between the gauge and quartic couplings. We perform functional as well as operator treatments allowing for the obtention of both fermion and vector field solutions. The structures of the Abelian models in terms of θ vacua are also addressed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Over the last quarter century, Petrobras has continually developed tools, techniques and methods to predict and to deal with organic deposition problems in offshore fields.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An alternative formulation for guided electromagnetic fields in grounded chiral slabs is presented. This formulation is formally equivalent to the double Fourier transform method used by the authors to calculate the spectral fields in open chirostrip structures. In this paper, we have addressed the behavior of the electromagnetic fields in the vicinity of the ground plane and at the interface between the chiral substrate and the free space region. It was found that the boundary conditions for the magnetic field, valid for achiral media, are not completely satisfied when we deal with chiral material. Effects of chirality on electromagnetic field distributions and on surface wave dispersion curves were also analyzed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Starting from the well established form of the Dirac action coupled to the electromagnetic and torsion field we find that there is some additional softly broken local symmetry associated with torsion. This symmetry fixes the form of divergences of the effective action after the spinor fields are integrated out. Then the requirement of renormalizability fixes the torsion field to be equivalent to some massive pseudovector and its action is fixed with accuracy to the values of coupling constant of torsion-spinor interaction, mass of the torsion and higher derivative terms. Implementing this action into the abelian sector of the Standard Model we establish the upper bounds on the torsion mass and coupling. In our study we used results of present experimental limits on four-fermion contact interaction (LEP, HERA, SLAC, SLD, CCFR) and TEVATRON limits on the cross section of new gauge boson, which could be produced as a resonance at high energy pp̄ collisions. © 1998 Elsevier Science B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We investigate the flux penetration patterns and matching fields of a long cylindrical wire of circular cross section in the presence of an external magnetic field. For this study we write the London theory for a long cylinder both for the mixed and Meissner states, with boundary conditions appropriate for this geometry. Using the Monte Carlo simulated annealing method, the free energy of the mixed state is minimized with respect to the vortex position and we obtain the ground state of the vortex lattice for N=3 up to 18 vortices. The free energy of the Meissner and mixed states provides expressions for the matching fields. We find that, as in the case of samples of different geometry, the finite-size effect provokes a delay on the vortex penetration and a vortex accumulation in the center of the sample. The vortex patterns obtained are in good agreement with experimental results.