97 resultados para ACUTE REGULATORY PROTEIN
Resumo:
The lymphoma is the main hematopoietic tumor in dogs and it is characterized by the proliferation of cells from lymphoid tissue, histiocytes and its precursors. Animals with lymphoma often show changes in biochemical and hematological parameters such as non-regenerative normochromic normocytic anemia, hemolytic anemia, hypocalcaemia and monoclonal gammopathy. The development of tumor can cause alterations in serum concentrations of acute phase proteins (APPs), consequent of hepatocytes stimulus by cytokines of inflammatory action. This study aimed to quantify and qualify APPs in dogs with lymphoma, at diagnosis time and during the time of chemotherapy sessions. After syneresis, centrifugation and fractioning the serum samples of 10 healthy and 10 dogs with lymphomas, the proteins fractions were separated by polyacrilamide gel electrophoresis (SDS-PAGE) and its concentrations were determined by computer densitometry. Between 18 and 30 proteins were separated by eletrophoresis, with molecular weights ranging from 18 to 245 kDa (kilodaltons). The alpha-1-glicoprotein acid (AGP) and transferrin serum concentration showed significantly higher in dogs with lymphoma, when compared with healthy dogs at diagnosis. The alpha-1-antitripsin (AAT) serum concentrations showed significantly higher in healthy dogs, when compared with dogs with lymphoma at diagnosis. The dogs with lymphoma the albumin did not appear as negative APP. On the other hand, transferrin appeared as positive AAP at diagnosis time and during the chemotherapy sessions. Healthy dogs had AAT serum concentrations significantly higher when compared to dogs with lymphoma at diagnosis. So, in this trial, it is suggested that this protein has been shown as a negative APP in the dogs with lymphoma. These dogs presented significantly higher AGP serum concentrations, in relation to healthy dogs at diagnosis, evidencing this protein APP positive behavior in neoplasm.
Resumo:
Fetal hemoglobin (Hb F), formed by two alpha globin chains (α) and two gamma chains (γ) (α2 γ2), has reduced expression in adults, ranging from 0 to 1% of total hemoglobin. Increased levels of Hb F are due to mutations in the β-globin family, which cause hereditary persistence of fetal hemoglobin (HPFH) and delta-beta thalassemia (δβ-thalassemia).The control of the production takes place by the regulatory region and regions outside the β-globin family, among them 2q16, 6q23, 8q, and Xp22.2.The aims of this study were to determine the presence and frequency of two mutations for δβ-thalassemia, the XmnI polymorphism and β-globin haplotypes in healthy individuals with increased Hb F in the State of São Paulo. We analyzed 60 samples of peripheral blood of healthy adults, without complaints of anemia. The samples were separated into two groups according to Hb F level: group I - 34 samples with Hb F ranging from 2 to 15% and group II - 26 samples with Hb F over 15%. In relation to the polymorphisms examined, we found three heterozygous individuals (5%) for Spanish δβ-thalassemia, belonging to group I, whose Hb F levels were within the normal range.The Sicilian δβ-thalassemia mutation was not found, indicating the need to study other polymorphisms related to the increase of Hb F in adult life.The frequency of XmnI polymorphism was 33.3% and the mean Hb F levels were 15.48 ± 11.69%.The frequency observed in our study for this polymorphic site is higher than that found in the literature for healthy subjects.This polymorphism was more prevalent in individuals with Hb F levels below 15%. For four samples positive for this polymorphism, the Hb F levels were explained by the presence of HPFH and Spanish δβ-thalassemia mutations, so that the presence of the XmnI polymorphic site was not a determinant in the overexpression of γ-globin genes. Regarding β-globin haplotypes, 18 alleles and 27 distinct genotypic patterns were found.The pattern Atp1/Atp2 was the mostfrequent genotype (13.72%).Of the 18 alleles, 13 showed atypical patterns.The results show that the haplotype V was the most frequent (27.45%), followed by atypical Atp2 (13.72%) and Atp1 (11.76%), and that there was a higher correlation with the presence of HPFH and XmnI polymorphism.The high frequency of haplotype V in our samples and high frequency of atypical haplotypes may reflect a high rate of miscegenation in this population, suggesting an ethnic characteristic for the Brazilian population, requiring the evaluation of population genetic markers to corroborate this hypothesis. © FUNPEC-RP.
Resumo:
Synovial fluid (SF) is capable of reflecting infectious, immunological, or inflammatory joint conditions in horses by altering its composition and appearance. Although plasma and SF compositions are quantitatively different, this latter compartment reflects changes in plasma macromolecules. Therefore, changes in serum immunoglobulin protein concentrations tend also to alter intracapsular levels. Therefore, it is necessary to know the physiological concentrations of proteins present in SF. The aim of this study was to determine the levels of total protein, albumin, transferrin, haptoglobin, α1-acid glycoprotein, ceruloplasmin, and immunoglobulins A and G in SF of six healthy horses. The synovial proteinogram was obtained by sodium dodecyl sulfate polyacrylamide gel electrophoresis. The SF proteins reached a maximum of 25% of serum concentrations, varying inversely with molecular weight of the protein, except for the ceruloplasmin. © 2013 Elsevier Inc.
Resumo:
Background: Intestinal ischemia/reperfusion (IR) injury is a serious and triggering event in the development of remote organ dysfunction, from which the lung is the main target. This condition is characterized by intense neutrophil recruitment, increased microvascular permeability. Intestinal IR is also responsible for induction of adult respiratory distress syndrome, the most serious and life-threatening form of acute lung injury. The purpose of this study was to investigate the effect of annexin-A1 protein as an endogenous regulator of the organ remote injury induced by intestinal ischemia/reperfusion. Male C57bl/6 mice were subjected to intestinal ischemia, induced by 45 min occlusion of the superior mesenteric artery, followed by reperfusion. Results: The intestinal ischemia/reperfusion evoked a high intensity lung inflammation as indicated by the number of neutrophils as compared to control group. Treatment with annexin-A1 peptidomimetic Ac2-26, reduced the number of neutrophils in the lung tissue and increased its number in the blood vessels, which suggests a regulatory effect of the peptide Ac2-26 in the neutrophil migration. Moreover, the peptide Ac2-26 treatment was associated with higher levels of plasma IL-10. Conclusion: Our data suggest that the annexin-A1 peptidomimetic Ac2-26 treatment has a regulatory and protective effect in the intestinal ischemia/reperfusion by attenuation of the leukocyte migration to the lung and induction of the anti-inflammatory cytokine IL-10 release into the plasma. The anti-inflammatory action of annexin-A1 and its peptidomimetic described here may serve as a basis for future therapeutic approach in mitigating inflammatory processes due to intestinal ischemia/reperfusion. © 2013 Guido et al.; licensee BioMed Central Ltd.
Resumo:
Paracoccidoides brasiliensis adhesion to lung epithelial cells is considered an essential event for the establishment of infection and different proteins participate in this process. One of these proteins is a 30 kDa adhesin, pI 4.9 that was described as a laminin ligand in previous studies, and it was more highly expressed in more virulent P. brasiliensis isolates. This protein may contribute to the virulence of this important fungal pathogen. Using Edman degradation and mass spectrometry analysis, this 30 kDa adhesin was identified as a 14-3-3 protein. These proteins are a conserved group of small acidic proteins involved in a variety of processes in eukaryotic organisms. However, the exact function of these proteins in some processes remains unknown. Thus, the goal of the present study was to characterize the role of this protein during the interaction between the fungus and its host. To achieve this goal, we cloned, expressed the 14-3-3 protein in a heterologous system and determined its subcellular localization in in vitro and in vivo infection models. Immunocytochemical analysis revealed the ubiquitous distribution of this protein in the yeast form of P. brasiliensis, with some concentration in the cytoplasm. Additionally, this 14-3-3 protein was also present in P. brasiliensis cells at the sites of infection in C57BL/6 mice intratracheally infected with P. brasiliensis yeast cells for 72 h (acute infections) and 30 days (chronic infection). An apparent increase in the levels of the 14-3-3 protein in the cell wall of the fungus was also noted during the interaction between P. brasiliensis and A549 cells, suggesting that this protein may be involved in host-parasite interactions, since inhibition assays with the protein and this antibody decreased P. brasiliensis adhesion to A549 epithelial cells. Our data may lead to a better understanding of P. brasiliensis interactions with host tissues and paracoccidioidomycosis pathogenesis. © 2013 Silva et al.
Resumo:
The nucleus of the solitary tract (NTS) is the primary site of visceral afferents to the central nervous system. In the present study, we investigated the effects of lesions in the commissural portion of the NTS (commNTS) on the activity of vasopressinergic neurons in the hypothalamic paraventricular (PVN) and supraoptic (SON) nuclei, plasma vasopressin, arterial pressure, water intake, and sodium excretion in rats with plasma hyperosmolality produced by intragastric 2 M NaCl (2 ml/rat). Male Holtzman rats with 15-20 days of sham or electrolytic lesion (1 mA; 10 s) of the commNTS were used. CommNTS lesions enhanced a 2 M NaCl intragastrically induced increase in the number of vasopressinergic neurons expressing c-Fos in the PVN (28 ± 1, vs. sham: 22 ± 2 c-Fos/AVP cells) and SON (26 ± 4, vs. sham: 11 ± 1 c-Fos/AVP cells), plasma vasopressin levels (21 ± 8, vs. sham: 6.6 ± 1.3 pg/ml), pressor responses (25 ± 7 mmHg, vs. sham: 7 ± 2 mmHg), water intake (17.5 ± 0.8, vs. sham: 11.2 ± 1.8 ml/2 h), and natriuresis (4.9 ± 0.8, vs. sham: 1.4 ± 0.3 meq/1 h). The pretreatment with vasopressin antagonist abolished the pressor response to intragastric 2 M NaCl in commNTS-lesioned rats (8 ± 2.4 mmHg at 10 min), suggesting that this response is dependent on vasopressin secretion. The results suggest that inhibitory mechanisms dependent on commNTS act to limit or counterbalance behavioral, hormonal, cardiovascular, and renal responses to an acute increase in plasma osmolality. © 2013 the American Physiological Society.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Aim: Chronic exposure to intermittent hypoxia commonly induces the activation of sympathetic tonus and the disruption of glucose homoeostasis. However, the effects of exposure to acute intermittent hypoxia (AIH) on glucose homoeostasis are not yet fully elucidated. Herein, we evaluated parameters related to glucose metabolism in rats exposed to AIH. Methods: Male adult rats were submitted to 10 episodes of hypoxia (6% O2, for 45 s) interspersed with 5-min intervals of normoxia (21%), while the control (CTL) group was kept in normoxia. Results: Acute intermittent hypoxia rats presented higher fasting glycaemia, normal insulinaemia, increased lactataemia and similar serum lipid levels, compared to controls (n = 10, P < 0.05). Additionally, AIH rats exhibited increased glucose tolerance (GT) (n = 10, P < 0.05) and augmented insulin sensitivity (IS) (n = 10, P < 0.05). The p-Akt/Akt protein ratio was increased in the muscle, but not in the liver and adipose tissue of AIH rats (n = 6, P < 0.05). The elevated glycaemia in AIH rats was associated with a reduction in the hepatic glycogen content (n = 10, P < 0.05). Moreover, the AIH-induced increase in blood glucose concentration, as well as reduced hepatic glycogen content, was prevented by prior systemic administration of the β-adrenergic antagonist (P < 0.05). The effects of AIH on glycaemia and Akt phosphorylation were transient and not observed after 60 min. Conclusions: We suggest that AIH induces an increase in blood glucose concentration as a result of hepatic glycogenolysis recruitment through sympathetic activation. The augmentation of GT and IS might be attributed, at least in part, to increased β-adrenergic sympathetic stimulation and Akt protein activation in skeletal muscles, leading to a higher glucose availability and utilization. © 2013 Scandinavian Physiological Society.
Resumo:
Objetivo: Investigar os efeitos do exercício físico agudo com diferentes intensidades sobre a sensibilidade à insulina e a atividade da proteína quinase B/Akt no músculo esquelético de camundongos obesos. Método: Foram utilizados camundongos Swiss, divididos aleatoriamente em quatro grupos, que receberam dieta padrão (grupo controle) ou dieta hiperlipídica (grupos obeso sedentário e grupos obesos exercitados 1 e 2), por período de 12 semanas. Dois diferentes protocolos de exercício foram utilizados: natação durante 1 hora com ou sem sobrecarga de 5% da massa corporal. O teste de tolerância à insulina foi realizado para estimar a sensibilidade à insulina. E os níveis protéicos da proteína quinase B/Akt e de sua fosforilação foram determinados no músculo esquelético dos camundongos, através da técnica de Western blot. Resultado: Uma sessão de exercício físico foi capaz de inibir a resistência à insulina em decorrência de uma dieta hiperlipídica. Foi possível demonstrar um aumento na fosforilação da proteína quinase B/Akt, melhora da sinalização da insulina e redução da glicemia de jejum nos camundongos que realizaram 1 hora de natação sem sobrecarga adicional e nos camundongos que realizaram 1 hora de natação com sobrecarga adicional de 5% de sua massa corporal. Entretanto, não houve diferença significativa entre os grupos que realizaram o exercício em diferentes intensidades. Conclusão: Independente da intensidade, o exercício físico aeróbio conseguiu aumentar a sensibilidade à insulina e a fosforilação da proteína quinase B/Akt, revelando ser uma boa forma de tratamento e prevenção do diabetes tipo 2.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
The aim of this study was to investigate the effects of acute glyphosate (active ingredient) exposure on the oxidative stress biomarkers and antioxidant defenses of a hybrid surubim (Pseudoplatystoma sp). The fish were exposed to different herbicide concentrations for 96 h. The thiobarbituric acid-reactive substances (TBARS), protein carbonyls and antioxidant responses were verified. The 15 mg a.p L-1 of herbicide resulted in the death of 50% of the fish after 96 h. An increase in liver and muscle TBARS levels was observed when fish were exposed to the herbicide. The protein carbonyl content was also increased in the liver (4.5 mg a.p L-1 concentration) and brain (2.25 mg a.p L-1 concentration). The antioxidant activities decreased in the liver and brain after exposure to herbicide. Levels of ascorbic acid in the liver (2.25 mg a.p L-1 and 4.5 mg a.p L-1 concentrations) and brain (2.25 mg a.p L-1 concentration) were increased post-treatment. Levels of total thiols were increased in the liver and brain (2.25 mg L-1 and 7.5 mg a.p L-1, respectively). Glyphosate exposure, at the tested concentrations affects surubim health by promoting changes that can affect their survival in natural environment. Some parameters as TBARS and protein carbonyl could be early biomarkers for Roundup exposure in this fish species. (C) 2014 Elsevier Inc. All rights reserved.
Resumo:
OBJECTIVE: The objective of this study was to perform a nutritional assessment of acute kidney injury patients and to identify the relationship between nutritional markers and outcomes.METHOD: This was a prospective and observational study. Patients who were hospitalized at the Hospital of Botucatu School of Medicine were evaluated between January 2009 and December 2011. We evaluated a total of 133 patients with a clinical diagnosis of acute kidney injury and a clinical presentation suggestive of acute tubular necrosis. We explored the associations between clinical, laboratory and nutritional markers and in hospital mortality. Multivariable logistic regression was used to adjust for confounding and selection bias.RESULTS: Non-survivor patients were older (67 +/- 14 vs. 59 +/- 16 years) and exhibited a higher prevalence of sepsis (57.1 vs. 21.4%) and higher Acute Tubular Necrosis-Individual Severity Scores (0.60 +/- 0.22 vs. 0.41 +/- 0.21) than did survivor patients. Based on the multivariable analysis, laboratorial parameters such as blood urea nitrogen and C-reactive protein were associated with a higher risk of death (OR: 1.013, p = 0.0052; OR: 1.050, p = 0.01, respectively), and nutritional parameters such as low calorie intake, higher levels of edema, lower resistance based on bioelectrical impedance analysis and a more negative nitrogen balance were significantly associated with a higher risk of death (OR: 0.950, p = 0.01; OR: 1.138, p = 0.03; OR: 0.995, p = 0.03; OR: 0.934, p = 0.04, respectively).CONCLUSIONS: In acute kidney injury patients, a nutritional assessment seems to identify nutritional markers that are associated with outcome. In this study, a low caloric intake, higher C-reactive protein levels, the presence of edema, a lower resistance measured during a bioelectrical impedance analysis and a lower nitrogen balance were significantly associated with risk of death in acute kidney injury patients.
Resumo:
Background: Acute respiratory infections (ARI) are the leading cause of infant mortality in the world, and human respiratory syncytial virus (HRSV) is one of the main agents of ARI. One of the key targets of the adaptive host immune response is the RSV G-protein, which is responsible for attachment to the host cell. There is evidence that compounds such as flavonoids can inhibit viral infection in vitro. With this in mind, the main purpose of this study was to determine, using computational tools, the potential sites for interactions between G-protein and flavonoids. Results: Our study allowed the recognition of an hRSV G-protein model, as well as a model of the interaction with flavonoids. These models were composed, mainly, of -helix and random coil proteins. The docking process showed that molecular interactions are likely to occur. The flavonoid kaempferol-3-O-α-L-arabinopyranosil-(2 → 1)-α-L-apiofuranoside-7-O-α-L-rhamnopyranoside was selected as a candidate inhibitor. The main forces of the interaction were hydrophobic, hydrogen and electrostatic. Conclusions: The model of G-protein is consistent with literature expectations, since it was mostly composed of random coils (highly glycosylated sites) and -helices (lipid regions), which are common in transmembrane proteins. The docking analysis showed that flavonoids interact with G-protein in an important ectodomain region, addressing experimental studies to these sites. The determination of the G-protein structure is of great importance to elucidate the mechanism of viral infectivity, and the results obtained in this study will allow us to propose mechanisms of cellular recognition and to coordinate further experimental studies in order to discover effective inhibitors of attachment proteins.
Resumo:
During the acute phase response, there is an increased production and release of certain proteins known as acute phase proteins (APPs) which can be produced by hepatocytes and peripheral tissues such as C-reactive protein (CRP), serum amyloid A (SAA), haptoglobin (Hp), alpha-1 acid glycoprotein (AGP). These proteins have been investigated as markers of various infectious diseases in small animals and the purpose of this review is to update the current knowledge about APPs in infectious diseases in dogs and cats.