65 resultados para zinc phosphate cement


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The aim of the present study was to evaluate the antibiofilm activity against Enterococcus faecalis, compressive strength. and radiopacity of Portland cement (PC) added to zirconium oxide (ZrO2), as radiopacifier, with or without nanoparticulated zinc oxide (ZnO).The following experimental materials were evaluated: PC, PC + ZrO2, PC + ZrO2 + ZnO (5%), and PC + ZrO2 + ZnO (10%). Antibiofilm activity was analyzed by using direct contact test (DCT) on Enterococcus faecalis biofilm, for 5 h or 15 h. The analysis was conducted by using the number of colony-forming units (CFU/mL). The compressive strength was performed in a mechanical testing machine. For the radiopacity tests, the specimens were radiographed together with an aluminium stepwedge. The results were submitted to ANOVA and Tukey tests, with level of significance at 5%. The results showed that all materials presented similar antibiofilm activity (

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The aim of this study was to evaluate the antimicrobial activity and pH changes induced by Portland cement (PC) alone and in association with radiopacifiers. Methods. The materials tested were pure PC, PC + bismuth oxide, PC + zirconium oxide, PC + calcium tungstate, and zinc oxide and eugenol cement (ZOE). Antimicrobial activity was evaluated by agar diffusion test using the following strains: Micrococcus luteus, Streptococcus mutans, Enterococcus faecalis, Pseudomonas aeruginosa, and Candida albicans. After 24 hours of incubation at 37°C, inhibition of bacterial growth was observed and measured. For pH analysis, material samples (n=10) were placed in polyethylene tubes and immersed in 10 mL of distilled water. After 12, 24, 48, and 72 hours, the pH of the solutions was determined using a pH meter. Results. All microbial species were inhibited by the cements evaluated. All materials composed of PC with radiopacifying agents promoted pH increase similar to pure Portland cement. ZOE had the lowest pH values throughout all experimental periods. Conclusions. All Portland cement-based materials with the addition of different radiopacifiers (bismuth oxide, calcium tungstate, and zirconium oxide) presented antimicrobial activity and pH similar to pure Portland cement.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The purpose of this study was to characterize and to evaluate the bioactivity potential of experimental root canal sealers (ES) based on Portland cement, epoxy resin with nano- and micro-particles of niobium or zirconium oxide used as radiopacifiers in comparison to AH Plus and MTA Fillapex. Methods Specimens of the sealers (10 mm in diameter × 1 mm thick) were prepared and the radiopacity was evaluated according to ISO 6876 (2012) specifications. Characterization of the sealers was performed under the scanning electron microscope (SEM) immediately after setting and after immersion for 28 days in Hank's balanced salt solution (HBSS). In addition X-ray energy dispersive spectroscopy (EDS), X-ray diffraction (XRD) and Fourier transform infrared (FT-IR) spectroscopy were also performed. The pH and calcium ion release were measured after 1, 7, 14, 21 and 28 days after completion of seating using a digital pH meter and an atomic absorption spectrophotometer, respectively. Results The experimental sealers exhibited an average radiopacity of 2.5 mm thickness of aluminum, which was similar to MTA Fillapex (P > 0.05) and inferior to AH Plus (P < 0.05). AH Plus did not show bioactivity. Although the experimental sealers did not exhibit the formation of hydration product, they encouraged the deposition of crystalline spherical structures of calcium deficient phosphate. The highest pH and calcium release values were observed with the experimental sealers (P < 0.01). ES-Nb-micro was the only sealer to present hexagonal shaped crystal deposition. Significance Novel root canal sealers based on a mixture of Portland cement, epoxy resin and radiopacifier exhibited a degree of bioactivity although no evidence of cement hydration was demonstrated on material characterization. The radiopacifier particle size had limited effect on the sealer microstructure and chemical properties.