106 resultados para ytterbium chloride
Resumo:
Cooperative energy transfer upconversion luminescence is investigated in Tb(3+)/Yb(3+)-codoped PbGeO(3)-PbF(2)-CdF(2) glass-ceramic and its precursor glass under resonant and off resonance infrared excitation. Bright UV-visible emission signals around 384, 415, 438 nm, and 473-490, 545, 587, and 623 nm are identified as due to the (5)D(3)((5)G(6))->(7)F(1) (J=6,5,4) and (5)D(4)->(7)F(1) (J=6,5,4,3) transitions, respectively, and readily observed. The results indicate that cooperative energy transfer between ytterbium and terbium. ions followed by excited state absorption are the dominant upconversion excitation mechanisms involved. Comparison of the upconversion process in a glass-ceramic sample and its glassy precursor revealed that the former present much higher upconversion efficiency. The dependence of the upconversion emission upon pump power, temperature, and doping content is also examined.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
To investigate further the age-related reduction in muscle protein synthesis activity found previously using a crude polyribosome/pH 5 system (Pluskal et al., 1984), a 0.5M KCl washing procedure was utilized to remove the nonribosomal factors from polyribosomes isolated from male Sprague-Dawley rats in the following age groups: young (1 to 2 months), mature (12 months), and aged (22 to 24 months). Using a common source of enriched elongation factor fraction from young animals, it was not possible to demonstrate any significant difference (p > .05) in protein synthesis between the 0.5M KCl-washed polyribosomes isolated from the various age groups. Using a cell-free system containing young salt washed polyribosomes stimulated by the addition of 0.5M KCl-wash fractions, however, it was shown that the mature and aged salt-wash fractions were less (p < .05) active than material from young animals. Thus, the observed decline in protein synthesis efficiency during aging may be attributed to a reduced capacity to promote initiation/elongation by the nonribosomal salt wash fractions of muscle polyribosomes.
Resumo:
Changes in activities of Cu-Zn superoxide dismutase (SOD- E.C.1.15.1.1.) and lactate dehydrogenase (LDH- E.C.1.1.1.27.) and levels of copper, total protein, triglycerides, phospholipids and total lipids were investigated in pancreas of rats after intratracheal administration of NiCl2 (8.4 mumol/kg). Nickel chloride induced increased SOD activity in pancreas and erythrocytes. This elevation was related to increased copper and decreased phospholipid content in pancreas of these animals. In conclusion, the ability of an animal to tolerate nickel chloride induced damage was governed by a delicate balance between the generation of cytotoxic agents and the various pancreas defense capabilities.
Resumo:
The rate removal of nickel from the airway was measured in vivo. Removal in vivo was studied by intratracheal injection of nickel chloride solutions. Regardless of time after injection, the lungs and heart retained the greatest concentration of nickel and 40 days after 1.68 mumol administration they were the organs where nickel was still significantly measurable. The slow removal of nickel may indicate the presence of high affinity binding sites in the lung. Nickel can interact with others metals, such as copper and zinc, so that nickel exposure may have public health implications.
Resumo:
The effect of nickel from soluble NiCl2 on Cu-Zn superoxide dismutase (SOD) activity, as well as on rate of nitro blue tetrazolium reduction, was studied in vitro since lipid peroxidation has been implicated in cell damage by nickel insoluble compounds, whose toxicity and carcinogenicity are well established. The physical and chemical nature of nickel compounds is one of the key determinations of its toxicity. Soluble nickel freely enter cells, but is just as readily excreted reducing the opportunity for production of lipid damage. Nickel from NiCl2 strongly activated SOD activity. In vitro addition of nickel chloride to a crude lung preparation altered the KM for SOD without changing the Vmax. Nickel chloride produced increased enzyme affinity to the substrate, because decreased (O2-) concentration that yields half-maximal velocity. The combination of nickel and SOD may contribute to stabilization of the particular conformation of SOD responsible for maximal catalytically activity.
Resumo:
We studied the nicotine stimulation of the amygdaloid complex (AMG) on sodium and water intake in satiated and water-deprived rats. Nicotine produced no change in sodium or water intake in satiated animals when injected directly into the AMG. In water-deprived animals, nicotine injected into the AMG (basolateral nuclei) only blocked sodium chloride intake. We have previously demontrated that carbachol inhibits water and sodium intake in both satiated and water-deprived animals injected into the AMG. Injection of hexamethonium into the AMG totally blocked water intake in satiated and water-deprived animals. Hexamethonium injected into the AMG prior to nicotine produced no change in sodium intake. Thus, the present data suggest that sodium and water intake are mediated by a specific population of cholinoceptive neurons in the amygdaloid complex.
Resumo:
Magnesium chloride (MgCl2) has been proposed for the treatment of seizures of different etiologies. The present study investigated the effect of MgCl2 on aldrin-induced seizures. Initially, 50 male rats received 60 mg aldrin/kg po and the effects were classified as muscular twitches, clonic convulsions or tonic-clonic convulsions. Another group of 40 rats dosed with 60 mg aldrin/kg po received 0, 4, 8, or 12 mg MgCl2/kg im. The percentage of tonic-clonic convulsant rats that resulted from MgCl2 treatment were 90% at 0 mg/kg; 50% at 4 mg/kg, 40% at 8 mg/kg and 20% at 12 mg MgCl2/kg. The percentage of survivors in the group receiving 12 mg MgCl2/kg was 80% while the control group had 20% survival. The clonic convulsions were not modified by MgCl2 treatment. Blood and brain concentrations of aldrin and dieldrin (metabolite of aldrin) did not differ among groups. The MgCl2 administration decreased the neuroexcitability induced by aldrin and increased survivability.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Sodium (Na+) and chloride (Cl-) nutritional requirements, dietary electrolyte balance (DEB), and their effects on acid-base balance, litter moisture, and tibial dyschondroplasia (TD) incidence for young broiler chickens were evaluated in two trials. One-day-old Cobb broilers were distributed in a completely randomized design with six treatments, five replicates, and 50 birds per experimental unit. Treatments used in both experiments were a basal diet with 0.10% Na+ (Experiment 1) or Cl- (Experiment 2) supplemented to result in diets with Na+ or Cl- levels of 0.10, 0.15, 0.20, 0.25 ,0.30, or 0.35%, respectively. In Experiment 1, results indicated an optimum Na+ requirement of 0.26%. Sodium levels caused a linear increase in arterial blood gas parameters, indicating an alkalogenic effect of Na+. The hypertrophic area of growth plate in the proximal tibiotarsi decreased with Na+ levels. The TD incidence decreased with increases in dietary Na+. Litter moisture increased linearly with sodium levels. In Experiment 2, the Cl- requirement was estimated as 0.25%. Chloride levels caused a quadratic effect (P ≤ 0.01) on blood gas parameters, with an estimated equilibrium [blood base excess (BE) = 0] at 0.30% of dietary CT-. No Cl- treatment effects (P ≥ 0.05) were observed on litter moisture or TD incidence. The best DEB for maximum performance was 298 to 315 mEq/kg in Experiment 1 and 246 to 264 mEq/kg in Experiment 2. We concluded that the Na+ and Cl- requirements for optimum performance of young broiler chickens were 0.28 and 0.25%, respectively.
Resumo:
The local concentrations of chloride, Cl b, and bromide, Br b, in the interface of vesicles prepared with dioctadecyldimethylammonium chloride, DODAC, or bromide, DODAB, dipalmitoylphosphatidylcholine, DPPC, dimyristoylphosphatidylcholine, DMPC, and mixtures of DMPC, DPPC, and DODAC were determined by chemical trapping by analyzing product yields from spontaneous dediazoniation of vesicle-bound 2,6-dimethyl-4-hexadecylbenzenediazonium ion. The values of Cl b and Br b in DODAC and DODAB vesicles increase with vesicle size, in agreement with previous data showing that counterion dissociation decreases with vesicle size. Addition of tetramethylammonium chloride displaces bromide from the DODAB vesicular interface. The value for the selectivity constant for Br/Cl exchange at the DODAB vesicular interface obtained by chemical trapping was ∼2.0, well within values obtained for comparable amphiphiles. In vesicles of DPPC the values of Cl b were very sensitive to the nature of the cation and decreased in the order Ca 2+ > Mg 2+ > Li + > Na + > K + = Cs + = Rb + ≥ +. The effect of the cation becomes more important as temperature increases above the phase transition temperature, T m, of the lipid. The values of Cl b increased sigmoidally with the mol % of DODAC in vesicles prepared with DODAC/lipid mixtures. In sonicated vesicles prepared with DODAC and DMPC (or DPPC), the values of Cl b reach local concentrations measured for the pure amphiphile at 80 mol % DODAC. These results represent the first extensive study of local concentration of ions determined directly by chemical trapping in vesicles prepared with lipids, synthetic ampliiphiles, and their mixtures.