164 resultados para titanium silicalite
Resumo:
Statement of problem. Titanium has physical and mechanical properties, which have led to its increased use in dental prostheses despite casting difficulties due to high melting point and formation of oxide layers which affect the metal-ceramic bond strength.Purpose. This in vitro study evaluated the shear bond strength of the interface of 2 dental porcelains and pure titanium injected into a mold at 3 different temperatures.Material and methods. Using commercially pure (cp) titanium bars (Titanium, Grade I) melted at 1668degreesC and cast at mold temperatures of 430degreesC, 700degreesC or 900degreesC, 60 specimens were machined to 4 x 4 mm, with a base of 5 x 1 mm. The 4-mm surfaces were airborne-particle abraded with 100 mum aluminum oxide before applying and firing the bonding agent and evaluating the 2 porcelains (Triceram/Triline ti and Vita Titankeramik). Ten specimens were prepared for each temperature and porcelain combination Shear bond testing was performed in a universal testing machine, with a 500-kg load cell and crosshead speed of 0.5 mm/min. The specimens were loaded until failure. The interfaces of representative fractured specimens of each temperature were examined with a scanning electron microscope (SEM) and energy dispersive spectrometer (EDS). Data for shear bond strength (MPa) were statistically analyzed by 2-way ANOVA and the Tukey test (alpha = .05).Results. The results showed significant differences for the metal/porcelain interaction effect (P = .0464). There were no significant differences for the 2 porcelains (P = .4250). The Tukey test showed a significant difference between the pair cp Ti 430degreesC Triceram and cp Ti 900degreesC Triceram, with respective mean values and SDs of 59.74 +/- 11.62 and 34.03 +/- 10.35 MPa.Conclusion. Triceram porcelain showed a bond strength decrease with an increase in the mold temperature for casting titanium. The highest bond strength for Vita porcelain and the best metal-ceramic interface observed with the SEM were found with the mold temperature of 700degreesC.
Resumo:
The cathodic behaviour of oxides formed on titanium electrodes in physiological solutions at potentials between 3 and 5 V (vs. SCE) was studied by cyclic voltammetry. In case of anodic polarization at potentials higher than 3 V (vs. SCE), a cathodic peak at similar to 0.4 V (vs. SCE) appears in the cathodic scan, which could be due to the reduction of unstable peroxides. The results show that this peak depends on the anodic potential and the oxidation time. This behaviour supposedly is due to the formation of unstable titanium peroxides like TiO3 during anodization. Based on repetitive oxidation-reduction processes can be concluded that the created amount of TiO3 inside of the TiO2 surface layer seems to be constant. (c) 2006 Elsevier Ltd. All rights reserved.
Resumo:
The synthesis, characterization and ethylene polymerization behavior of a set of Tp'MCl3 complexes (4, M = Ti, Tp' HB(3-neopentyl-pyrazolyl)(3)(-) (Tp(NP)); 5, M = Ti, Tp'= HB(3-tert-butyl-pyrazolyl)(3)(-) (Tp(tBu)); 6, M = Ti, Tp' = HB(3-phenyl-pyrazolyl)(3)(-) (Tp(Ph)); 7, M = Zr, Tp' = HB(3-phenyl-pyrazolyl)(3)(-) (Tp(ph)); 8, M = Zr, Tp' = HB(3-tert-butyl-pyrazolyl)(3)(-) (Tp(tBu))) is described. Treatment of these tris(pyrazolyl)borate Group IV compounds with methylalumoxane (MAO) generates active catalysts for ethylene polymerization. For the polymerization reactions performed in toluene at 60 degreesC and 3 atm of ethylene pressure, the activities varied between 1.3 and 5.1 X 10(3) g of PE/mol[M](.)h. The highest activity is reached using more sterically open catalyst precursor 4. The viscosity-average molecular weights ((M-v) over bar) of the PE's produced with these catalyst precursors varying from 3.57 to 20.23 x 10(5) gmol(-1) with melting temperatures in the range of 127-134 degreesC. Further polymerization studies employing 7 varying Al/Zr molar ratio and temperature of polymerization showed that the activity as well as the polymer properties are dependent on these parameters. In that case, higher activity was attained at 60 degreesC. The viscosity-average molecular weights of the polyethylene's decreases with increasing AI/Zr molar ratio. (C) 2003 Elsevier B.V. All rights reserved.
Resumo:
Background: This study investigated the influence of estrogen deficiency and its treatment with estrogen and alendronate on the removal torque of osseointegrated titanium implants.Methods: Fifty-eight female Wistar rats received a titanium implant in the tibia metaphysis. After 60 days, which was needed for implant osseointegration, the animals were randomly divided into five groups: control (CTLE; N = 10), sham surgery (SHAM; N = 12), ovariectomy (OVX; N = 12), ovariectomy followed by hormone replacement (EST; N = 12), and ovariectomy followed by treatment with alendronate (ALE; N = 12). The CTLE group was sacrificed to confirm osseointegration, whereas the remaining groups were submitted to sham surgery or ovariectomy according to their designations. After 90 days, these animals were also sacrificed. Densitometry of femur and lumbar vertebrae was performed by dual-energy x-ray absorptiometry (DXA) to confirm systemic impairment of the animals. All implants were subjected to removal torque.Results: Densitometric analysis of the femur and lumbar vertebrae confirmed a systemic impairment of the animals, disclosing lower values of bone mineral density for OVX. Analysis of the removal torque of the implants showed statistically lower values (P <0.05) for the OVX group in relation to the other groups. However, the group treated with alendronate (ALE group) presented significantly higher torque values compared to the others.Conclusion: According to this study, estrogen deficiency was observed to have a negative influence on the removal torque of osseointegrated implants, whereas treatment with alendronate
Resumo:
Statement of problem. There are few studies on titanium casting shrinkage, and phosphate-bonded investments for titanium casting have not produced appropriate marginal fit.Purpose. The purpose of this study was to determine the thermal shrinkage of titanium and the setting and thermal expansion of 3 phosphate-bonded investments.Material and methods. The thermal shrinkage between the melting temperature and room temperature was calculated using a titanium thermal expansion coefficient. The thermal and setting expansion were measured for 3 phosphate bonded investments: Rematitan Plus (RP) specific for titanium, Rema Exakt (RE), and Castorit Super C (CA), using different special liquid concentrations (100%, 75%, and 50%). Setting expansion was measured for cylindrical specimens 50 mm long x 8 mm in diameter with a transducer. The heating and cooling curves were obtained with a dilatometer (DIL 402 PC). The total expansion curve was drawn using software, and temperatures to obtain expansion equivalent to titanium casting shrinkage were determined (n=5). In addition, the total expansion of the control group (RP at 430 degrees C) was measured, as well as the temperatures at which the other groups achieved equivalent total expansion (n=5). Data were analyzed by 1-way ANOVA and the Tukey HSD test (alpha=.05).Results. Titanium casting shrinkage was estimated as 1.55%. RP did not achieve this expansion. RE achieved expansion of 1.55% only with a special liquid concentration of 100% at 594 degrees C. CA with all special liquid concentrations attained this expansion (351 degrees C to 572 degrees C). Total expansion of the control group was 0.86%, and the other groups reached that expansion within the range of 70 degrees C to 360 degrees C.Conclusions. Only RE and CA demonstrated sufficient expansion to compensate for titanium casting shrinkage. All groups reached total expansion equivalent to that of the control group at significantly lower temperatures.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Titanium(IV) oxide, coated on the surface of silica gel (surface area, 308 m2 g-1; amount of Ti(IV) per gram of modified silica gel, 1.8 x 10(-3) mol), was used to adsorb CrO4(2-) ions from acidic solutions. The exchange capacity increased at lower pH values and was affected to some extent by the acid used. The material was used to preconcentrate Cr(VI) from 0.5 ppm solutions of chromate very efficiently and virtually 100% recovery was achieved in every instance.