320 resultados para thermogravimetry and differential thermal analysis
Resumo:
SnO2-based materials are used as sensors, catalysts and in electro-optical devices. This work aims to synthesize and characterize the SnO2/Sb2O3-based inorganic pigments, obtained by the polymeric precursor method, also known as Pechini method (based on the metallic citrate polymerization by means of ethylene glycol). The precursors were characterized by thermogravimetry (TG) and differential thermal analysis (DTA). After characterization, the precursors were heat-treated at different temperatures and characterized by X-ray diffraction. According to the TG/DTA curves basically two-step mass loss process was observed: the first one is related to the dehydration of the system; and the second one is representative to the combustion of the organic matter. Increase of the heat treatment temperature from 500 to 600 degrees C and 700 degrees C resulted higher crystallinity of the formed product.
Resumo:
The hydrated basis carbonates of lanthanides and yttrium were prepared by precipitation from homogeneous solution via the hydrolysis of urea, without the addition of an auxiliary anion. Thermogravimetry, derivative thermogravimetry (TG-DTG), and differential thermal analysis (DTA) have been used in the study of these compounds in CO2 atmosphere. The results lead to the composition and thermal stability of the studied compounds, and also to a comparative study with reported results in air atmosphere. © 1993.
Resumo:
Mixed calcium and copper oxalates, with different proportions of Ca2+ and Cu2+ ions, were precipitated by dimethyl oxalate hydrolysis in homogeneous solution. The compounds were evaluated by means of scanning electron microscopy, energy dispersive X-ray spectroscopy, thermogravimetry (TG), and differential thermal analysis (DTA). The results suggested quantitative precipitation without solid solution formation. From the TG and DTA curves, it was possible to evaluate the Ca2+ ion proportion in the solid phase and to confirm the precipitation of the individual species.
Resumo:
Solid state Ln-DMBP compounds, where Ln represents trivalent lanthanides (except for promethium) and yttrium, and DMBP is 4-dimethylaminobenzylidenepyruvate, were prepared. Thermogravimetry (TG), differential thermal analysis (DTA), and other methods of analysis were used to characterize and to study the thermal stability and thermal decomposition of these compounds. © 1993.
Resumo:
Thermogravimetry (TG), differential thermal analysis (DTA), differential scanning calorimetry (DSC), Fourier transform infrared spectroscopy (FTIR), and DFT theoretical calculations were used to study benzamide. The TG-DTA and DSC curves provided information concerning the melting point, evaporation and thermal stability of the compound. Using the FTIR technique it was possible to confirm the evaporation of the compound with no degradation. Density functional theory (DFT) at the 6-311++G (3df, 3dp) level, provided information regarding the energies involved in HOMO-LUMO transitions and the chemical stability of the compound.
Resumo:
The possibility of thermal treatment plants of municipal wastewater is an alternative solution for the final disposition of the sludge produced on small cities as Barueri, a small town of São Paulo State, Brazil. Combustion and pyrolysis of that municipal waste, occurring respectively in air and nitrogen, have been studied by thermogravimetry (TG) and differential thermal analysis (DTA). The main steps of each case were analyzed and Kissinger plots were used to estimate respective activation energies. DTG peaks are more indicated to represent the condition of maximum reaction rates than DTA peaks.
Resumo:
Solid-state compounds of general formula Ln(2)L(3)center dot nH(2)O, where L represents 1,4-bis(3-carboxy-3-oxo-prop-1-enyl)benzene and Ln = La, Ce, Pr, Nd, Sm, were synthesized. Complexometric titrations with EDTA, thermogravimetry (TG), differential thermal analysis (DTA), differential scanning calorimetry (DSC), X-ray powder diffractometry, elemental analysis and infrared spectroscopy have been employed to characterize and to study the thermal behavior of these compounds in dynamic air atmosphere. The results led to information about the composition, dehydration, crystallinity, and thermal decomposition of the synthesized compounds.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Thermal decomposition of solid state compounds of lanthanide and yttrium benzoates in CO2 atmosphere
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The thermal behavior of simple and mixed pyrazolyl complexes [PdCl2(phmPz)(2)] (1),[Pd(N-3)(2)(phmPz)(2)] (2), [Pd(SCN)(2)(phmPz)(2)] (3), and [Pd(N-3)(SCN)(phmPz)(2)] (4) (phmPz: 1-phenyl-3-methylpyrazole) has been investigated by means of thermogravimetry (TG) and differential thermal analysis (DTA). From the initial decomposition temperatures, the thermal stability of the complexes can be ordered in the sequence: 4 < 2 < 3 < 1. The final products of the thermal decompositions were characterized as metallic palladium (Pd-0). (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
Magnesium and zinc ferrites have been prepared by the polymeric precursor method. The organic material decomposition was studied by thermogravimetry (TG) and differential thermal analysis (DTA). The variation of crystalline phases and particle morphology with calcination temperature were investigated using X-ray diffraction (XRD) and scanning electronic microscopy (SEM), respectively. The colors of the ferrites were evaluated using colorimetry. Magnesium ferrite crystallizes above 800 degrees C, presenting a yellow-orange color with a reflectance peak at the 600-650 nm range, while zinc ferrite crystallizes at 600 degrees C, with a reflectance peak between 650-700 nm, corresponding to the red-brick color.
Resumo:
Four new mononuclear Pd(II) complexes of the type [PdX2(tdmPz)] {X = Cl- (1); Br- (2); I- (3); SCN- (4); tdmPz = 1-thiocarbamoyl-3,5-dimethylpyrazole} have been synthesized and characterized by elemental analysis, IR spectroscopy, H-1 and C-13{H-1}-NMR experiments. The thermal behavior of the complexes 1-4 has been investigated by means of thermogravimetry (TG) and differential thermal analysis (DTA). From the initial decomposition temperatures, the thermal stability of the complexes can be ordered in the sequence: 3 < 4 a parts per thousand 2 < 1. The final products of the thermal decompositions were characterized as metallic palladium by X-ray powder diffraction.
Resumo:
Hydrated lanthanide(III) and yttrium(III) selenites were prepared. Simultaneous thermogravimetric and differential thermal analysis, classical differential thermal analysis, X-ray diffraction and other methods of analysis have been used in the characterisation as well as in the study of the thermal decomposition of these compounds. The results led to the composition and thermal stability and also to interpretations concerning the thermal decomposition mechanisms. © 1990.
Resumo:
The thermal behavior of the pyrazolyl complexes [NiCl2(HPz) 4] (1), [Ni(NCS)2(HPz)4] (2), [NiCl 2(HdmPz)4]·2H2O (3) and [Ni(NCS) 2(HdmPz)4]·2H2O (4) (HPz=pyrazole, HdmPz=3,5-dimethylpyrazole) has been studied by thermogravimetry (TG) and differential thermal analysis (DTA). The TG data indicated that the thermal stability of [NiX2(HL)4] (X=Cl, NCS) compounds varies depending on the pyrazolyl ligand in the following order HL=HPz>HdmPz. From the thermal decomposition of 3 and 4 it was possible to isolate the intermediate compounds [Ni(μ-Cl)2(HdmPz)2] (3a) and [Ni(μ-1,3-NCS) 2(HdmPz)2] (4a), respectively. The final products of the thermal decompositions of 1-4 were identified as NiO by X-ray powder diffraction. © 2005 Akadémiai Kiadó, Budapest.
Resumo:
Peat was taken from the Sergipe State, Brazil and characterized by several techniques: elemental and thermal analyses; Fourier infrared (FTIR) and solid state 13C nuclear magnetic resonance (NMR) spectroscopies; scanning electron microscopy (SEM), environmental scanning electron microscopy (ESEM) and X-ray diffractometry (XRD). Also, the Sergipe State peat samples were compared with other peat sample from later from Sao Paulo State, Brazil. The lowest O/C and E 4/E 6 ratios and differential thermal analysis (DTA) curves of the Santo Amaro (SAO) sample indicated that this sample had the highest degree of decomposition. FTIR results showed that Itabaiana (ITA) and São Paulo (SAP) samples presented more prominent peak at 1086 cm -1 attributed the presence of Si-O than SAO sample spectra. The SAO sample showed two more intense peaks at 2920 cm -1 and 2850 cm -1. These results were corroborated by 13C NMR and thermal gravimetric (TG) where the relative abundance of the alkyl-C groups was greater in the SAO sample. The X-ray diffractometry (XRD) of SAO sample is characteristic of amorphous matter however, the SAP and ITA samples revealed the large presence of quartz mineral. The scanning electron microscopy (SEM) and environmental scanning electron microscopy (ESEM) showed that the surface of peat samples have porous granules of organic material. The ITA and SAP peat samples are alike while SAO peat sample is richer in organic material. Only the SAO sample has truthful characteristics of peat. The results of this study showed that the samples are very different due to variable inorganic and organic material contents. ©2007 Sociedade Brasileira de Química.