268 resultados para tectonic geomorphology
Resumo:
The Itaqui Granitoid Complex is a drop shaped WNW-ESE trending intrusion with its head' at west. Its contacts with the low-grade metamorphic rocks of the Sao Roque Group are intrusive at west, northwest, north and northeast, and tectonic at south and northeast. The complex is built up by four main intrusive phases which characterize a rising and unroofing process. Petrographically the Itaqui granite comprises five distinct magmatic associations in nine igneous units. -from English summary
Resumo:
The older Precambrian geological setting of north Goias/south Tocantins includes three areas of granite-greenstone terrains formed of medium-grade gneisses with associated greenstone belts and nepheline syenitic gneisses, separated by two orogenic belts composing a crustal-scale pop-up structure. The movements were firstly oblique towards NW along the northwestern NNE-SSW-trending Porto Nacional suture, and afterwards of essentially frontal type towards ESE along the southeastern Ceres suture of curved geometry with N-S direction at north and WNW-ESE at the south. The Porangatu block, limited by these sutures, was upthrusted over the neighbouring underthrusted blocks. Three principal kinematic phases are recognized along the orogenic belts. -from English summary
Resumo:
The Borborema Province of NE Brasil comprises the central part of a wide Pan-African-Brasiliano orogenetic belt that formed as a consequence of late Neoproterozoic convergence and collision of the São Luis-West Africa craton and the São Francisco-Congo-Kasai cratons. New Sm Nd and U Pb results from the eastern part of this province help to define the basic internal architecture and pre-collisional history of this province, with particular emphasis on delineating older cratonic terranes, their fragmentation during the Mesoproterozoic, and their assembly into West Gondwana during the Pan African-Brasiliano orogeny at ca. 600 Ma. The region can be divided into three major geotectonic domains: a) Rio Piranhas-Caldas Brandão massif, with overlying Paleoproterozoic to Neoproterozoic supracrustal rocks, north of the Patos Lineament; b) the Archean to Paleoproterozoic São Francisco craton (SFC) to the south; and c) a complex domain of Paleoproterozoic to Archean basement blocks with several intervening Mesoproterozoic to Neoproterozoic fold belts in the center (south of Patos Lineament and north of SFC). The northern and central domains comprise the Borborema Province. Archean basement gneiss and Transamazonian granulite of northern SFC are exposed in the southern part of the central domain, underlying southern parts of the Sergipano fold belt. Basement in the Rio Piranhas massif appears to consist mostly of Transamazonian (2.1 to 2.2 Ga) gneissic rocks; Nd model ages (TDM) of ca. 2.6 Ga for 2.15 Ga gneisses indicate a substantial Archean component in the protoliths to these gneisses. The Caldas Brandão massif to the east yields both Transamazonian and Archean U Pb zircon and Nd (TDM) ages, indicating a complex architecture. Metasedimentary rocks of the Jucurutu Formation yield detrital zircons with original crystallization ages as young as 1.8 Ga, indicating that these rocks may be late Paleoproterozoic and correlate with other ca. 1.8 Ga cratonic supracrustal rocks in Brazil such as the Roraima Group and Espinhaço Group. Most metavolcanic and pre-Brasiliano granitic units of the Sergipano (SDS), Pajeú-Paraíba (SPP), Riacho Pontal (SRP), and Piancó-Alto Brígida (SPAB) fold belts in the central domain formed ~ 1.0 ± 0.1 Ga, based on U Pb ages of zircons. Nd model ages (TDM) for these same rocks, as well as Brasiliano granites intruded into them and large parts of the Pernambuco-Alagoas massif, are commonly 1.3-1.7 Ga, indicating that rocks of the fold belts were not wholly derived from either older (> 2.1 Ga) or juvenile (ca. 1.0 Ga) crust, but include mixtures of both components. A simple interpretation of Brasiliano granite genesis and the Nd data implies that there is no Transamazonian or Archean basement underlying large parts of these fold belts or of the Pernambuco-Alagoas massif. An exception is a belt of syenitic Brasiliano plutons (Syenitoid Line) and host gneisses between SPAB and SPP that clearly has a Transamazonian (or older) source. In addition, there are several smaller blocks of Archean to Transamazonian gneiss that can be defined within and among these fold belts. These blocks do not appear to constitute a continuous basement complex, but appear to be isolated older crustal fragments. Our data support a model in which ca. 1.0 Ga rifting was an important tectonic and crust-forming event along the northern edge of the São Francisco craton. Our data also show that significant parts of the Borborema Province are not remobilized Transamazonian to Archean crust, but that Mesoproterozoic crust is a major feature of the Province. There are several small remnants of older crust within the area dominated by Mesoproterozoic crust, suggesting that the rifting event created several small continental fragments that were later incorporated into the Brasiliano collisional orogen. We cannot at present determine if the Rio Piranhas-Caldas Brandão massifs and the older crustal blocks of the central domain were originally part of the São Francisco craton or whether some (or all) of them came from more exotic parts of the Proterozoic Earth. Finally, our data have not yet revealed any juvenile terranes of either Transamazonian or Brasiliano age. © 1995.
Resumo:
This is a synthesis of the use of fractal approaches in geosciences. It presents references and a list of publications, taking into account sectors of many fields, including geophysics, petrology, mineralogy, sedimentology, tectonics, meteorology, climatology, geomorphology, hydrogeology, oceanography, geomechanics, geochemistry and soil studies. -English summary
Resumo:
Structural, geochemical, and isotope studies were carried out on the gold deposits of the Pontes e Lacerda region (Mato Grosso state, Brazil), where rocks of the Aguapei and Rondoniano mobile belts (southwestern Amazonian craton) occur. The orebodies are hosted in metavolcanic, gneiss-granite, quartzite, tonalite, and granite units. Tectonics involve oblique overthrusting (from northeast to southwest), which led to the formation of recumbent folds and thrusts (pathways for the mineralizing fluids), upright folds, and faults with dominant strike-slip component. These unconformities represent potential sites for mineralization. During geological mapping, it was observed that the orebodies consist of quartz, pyrite, and gold, and that the hydrothermal alteration zone contains quartz, sericite, pyrite (altered to limonite), and magnetite (altered to hematite). Chalcopyrite, galena, and sphalerite occur only in the Onça deposit. Chemical analysis of sulfides indicates high contents of Bi, Se, and Te in sulfides and gold, suggesting plutonic involvement in the origin of hydrothermal solutions. K-Ar dating of hydrothermal sericites from gold veins yielded ages in the range from 960 to 840 Ma, which may indicate the age of original crystallization of sericite. Pb-Pb dating in galenas yielded model ages in the range from 1000 to 800 Ma for the Onça deposit, which is in agreement with K-Ar ages. Pb-isotopic ratios indicate high U/Pb and low Th/Pb for the upper-crustal Pb source before incorporation in galena crystals. The Pontes e Lacerda gold deposits yielded ages correlated to the Aguapei event and probably were formed during a Proterozoic contractional tectonic period in the southwestern part of the Amazon craton, which may characterize an important metallogenic epoch in the Pontes e Lacerda region.
Resumo:
The Borborema province (BP) of northeastern Brazil, located between the São Luís and São Francisco cratons, represents a branching system of Precambrian orogens of the South American platform. It is composed of segments of Archean and Proterozoic crust that were deformed by the convergence of the West African and São Francisco-Congo cratons during assembly of the Brasiliano collage (650 to 500 Ma), a period of intense orogenic activity considered to be the strongest and most pervasive tectonic event that affected the Precambrian of the South American platform. The tectonic and kinematic history of the Brasiliano/Panafrican orogeny is fundamental for reconstructing South American and African Precambrian geology. The correlation between Neoproterozoic tectonic processes occurring in both continents should use structural elements, of regional or local character, with identical kinematic and metamorphic conditions manifested in both basement and supracrustal units. North of the Patos shear zone, subhorizontal Brasiliano thrusts (0.65 to 0.58 Ga) affected the basement and the supracrustal Seridó belt with such related regional D1/D2 structures as foliation, lineation, isoclinal folds, and related metamorphism. Overprinting the previous structures, regional folding with a vertical S3 foliation and an associated strike-slip shear zone were developed (0.58 to 0.52 Ga). The metamorphism is similar for all deformation phases, ranging from upper-greenschist to amphibolite facies with mineral assemblages including biolite and garnet throughout the Seridó fold belt. We propose, on the basis of deformational and kinematic reconstructions, that the structural evolution of the Seridó fold belt was characterized by transition from a syn-collisional to a strike-slip regime. The transition between regimes occurred, progressively or instantaneously, by the switching of the maximum and intermediary strain axes of the strain ellipsoid. The entire tectonic history can be related to a frontal or oblique collision and lateral escape tectonics, with local, syn-collisional transpression and transtension. The Patos shear zone represents a final vertical shearing, juxtaposing different terranes of the northern and southern Borborema province.
Resumo:
The sedimentary Curitiba basin is located in the Central-Southern part of the first Parananense plateau, and comprises Curitiba (PR), and part of the neighbour Municipalities (fig.1). It is supposed to be of Plio-Pleistocene age. It has a shallow sedimentary fulfillment, represented by the Guabirotuba formation (BIGARELLA and SALAMUNI, 1962) which is dristributed over a large area of about 3.000km2. The internal geometry, not entirely known yet, is actually object of detailed research, that shows its geological evolution to Cenozoic tectonic movements. For the purpose of this study the definition of the structural contour of the basement and their depo-centers is fundamental. This paper presents the results of the integration of surface and subsurface data, processed by statistical methods, which allowed a more precise definition of the morphostructural framework of the basement. For the analysis of the geological spacial data, specific softwares were used for statistical processing for trend surfaces analysis. The data used in this study are of following types: a) drilling logs for ground water; b) description of surface points of geological maps (CRPM, 1977); c) description of points of geotechnical drillings and down geological survey. The data of 223 drilling logs for ground water were selected out of 770 wells. The description files of 700 outcrops, as well as planialtimetric field data, were used for the localization of the basement outcrop. Thus, a matrix with five columns was set up: utm E-W (x) and utm N-S (y); surface altitude (z); altimetric cote of the contact between sedimentary rocks and the basement (k); isopachs (l). For the study of the basement limits, the analysis of surface trends of 2(nd) and 3(rd) degree polinomial for the altimetric data (figs. 2 and 3) were used. For the residuals the method of the inverse of the square of the distance (fig.4) was used. The adjustments and the explanations of the surfaces were made with the aid of multiple linear regressions. The analysis of 3rd degree polinomial trend surface (fig.3) confirmed that the basement tends to be more exposed towards NNW-SSE explaining better the data trend through an ellipse, which striking NE-SW and dipping SW axis coincides with the trough of the basin observed in the trending surface of the basement. The performed analysis and the respective images offer a good degree of certainty of the geometric model of the Curitiba Basin and of the morphostructure of its basement. The surface trend allows to sketch with a greater degree of confidence the structural contour of the topgraphic surface (figs. 5 and 6) and of the basement (figs. 7 and 8), as well as the delimitation of intermediate structural heights, which were responsible for isolated and assymmetric depocenters. These details are shown in the map of figures 9 and 10. Thus, the Curitiba Basin is made up by a structural trough stretching NE-SW, with maximum preserved depths of about 80m, which are separated by heights and depocenters striking NW-SE (fig. 11). These structural features seems to have been controlled by tectonic reactivation during the Tertiary (HASUI, 1990) and which younger dissection was conditioned by neotectonic processes (SALAMUNI and EBERT, 1994).
Resumo:
The Bouguer gravity anomaly of the northwest Ceará state in north-central Brazil was separated into its regional and residual components which were interpreted separately. By assuming that the sources of the regional anomalies are the depth variations of the crust-mantle interface, the mapping of these variations permited identifying crustal thickening zones which may be related to regional structures. The gravity residual sources coincide with occurrences of high-grade rocks (granulites) associated to medium-grade gneisses. Besides, the major strike-slip zones present significant signatures in the gravity data. This geophysical interpretation is compatible with the interpretation that the tectonic framework of the area is related to two crustal blocks conjoined by an A-type suture. The blocks are displaced along an oblique ramp with dextral movement, which played an important role in uplifting high-grade rocks from the lower crust to upper crustal levels. The suture zone corresponds to an imbricated compressive system dipping to the east and complicated by late dextral strike-slip shear zones.
Resumo:
An analysis of covariance relating basin area (A, km2) to river length (L, km) and discharge rate (D, m3 s-1) was performed for two continents and showed that the two covariates (L and D) were highly significant and that the strength of the relationship changed between continents. For comparison, D was excluded but the result remained the same. Although geomorphological models are useful for establishing global levels of production, these regressions should be applied with caution. Historically, simple statistical models were developed to predict fish catches in rivers. These, based upon regression of catches on channel length or basin area for Africa and Central Amazonia, are contrasted in this paper because of their generally similar approach.
Resumo:
The fractal and multifractal approaches in the geographical analysis. This paper results from a bibliographical research showing the applications of the fractal and multifractal approaches in the geographical studies. At first describes some text books about fractals and, after, focuses the works did concerned with Physical Geography, Meteorology, Climatology, Geomorphology, Pedology and Human Geography.
Resumo:
The iron ores of Alegria mine are composed of itabirites enclosing minor bodies of high-grade ores. The itabirites are classified according to mineralogical composition in five types: martite-rich, goethite-rich, specularite-rich, magnetite-rich and anphibolite-rich ores. The hematites are martite-rich, magnetite-rich, specularite-rich and more rarely, amphibolite-rich. Other classification criteria of the ores are based on the physical properties and the degree of compaction. As such, the itabirites and hematites can be classified as hard, friable and soft types. The mineralogical/textural evolution of the ores is linked to the pressure and temperature conditions that accompanied the tectonic processes in anphibolite facies and the different degrees of subsequent surficial weathering processes. Petrographic and microstructural studies indicate that the magnetite and amphibole bearing itabirites represent the parent rocks that created the other itabirites and that the specularite itabirites and the hard martite types are related to silica dissolution and redeposition in zones of high and low strain. Most of itabirites ores correspond to chert oxide facies banded iron formation, except the goethite and amphibole bearing itabirite that resemble a silicate or oxide-silicate facies with minor carbonate impurities. The great mass and pods of soft martite itabirites are probably shaley oxide facies BIFs with little volcanic contribution. Trace element contents of the Alegria's itabirites show strong dissimilarities with BIFs associated with volcanism (Algoma type), but closely ressemble to the Lake Superior type, with high content in Cr, Co and low V, Ni, Cu and Zn. Although the absolute contents of REE present in the Alegria's itabirites are, in general very low, the pattern when normalised by NASC is similar to the great majority of the Archean and Paleoproterozoic BIFs elsewhere in the world, and characterised by positive Eu anomaly.
Resumo:
Recent field investigations and geochronological studies of Neoproterozoic rocks in the northwestern part of the Borborema Province, Ceará State, NE Brazil provide important clues pertaining to the nature of convergence between the Borborema Province and the West African-São Luis craton during the assembly of West Gondwana. U-Pb zircon data indicate that the earliest evidence of convergent magmatism along the northwest margin of the Borborema Province occurred around 777 Ma, and was followed by the development of a large continental arc batholith (Santa Quitéria batholith) between ca. 665 and 591 Ma within the central part of Ceará State. These findings, along with supporting geophysical data, suggest that convergence between the Borborema Province and the West African-São Luis craton involved closure of an oceanic realm with subduction polarity to the southeast beneath the northwestern part of the province. Consequently, it seems likely that the Pharusian Ocean was continuous from the Hoggar Province in West Africa into South America during the late Neoproterozoic and additional data suggests that it may have even been connected with the Goianides Ocean of the Brasília Belt farther to the southwest.
Resumo:
The Brasília belt borders the western margin of the São Francisco Craton and records the history of ocean opening and closing related to the formation of West Gondwana. This study reports new U-Pb data from the southern sector of the belt in order to provide temporal limits for the deposition and ages of provenance of sediments accumulated in passive margin successions around the south and southwestern margins of the São Francisco Craton, and date the orogenic events leading to the amalgamation of West Gondwana. Ages of detrital zircons (by ID-TIMS and LA-MC-ICPMS) were obtained from metasedimentary units of the passive margin of the São Francisco Craton from the main tectonic domains of the belt: the internal allochthons (Araxá Group in the Áraxá and Passos Nappes), the external allochthons (Canastra Group, Serra da Boa Esperança Metasedimentary Sequence and Andrelândia Group) and the autochthonous or Cratonic Domain (Andrelândia Group). The patterns of provenance ages for these units are uniform and are characterised as follows: Archean- Paleoproterozoic ages (3.4-3.3, 3.1-2.7, and 2.5-2.4Ga); Paleoproterozoic ages attributed to the Transamazonian event (2.3-1.9Ga, with a peak at ca. 2.15Ga) and to the ca. 1.75Ga Espinhaço rifting of the São Francisco Craton; ages between 1.6 and 1.2Ga, with a peak at 1.3Ga, revealing an unexpected variety of Mesoproterozoic sources, still undetected in the São Francisco Craton; and ages between 0.9 and 1.0Ga related to the rifting event that led to the individualisation of the São Francisco paleo-continent and formation of its passive margins. An amphibolite intercalation in the Araxá Group yields a rutile age of ca. 0.9Ga and documents the occurrence of mafic magmatism coeval with sedimentation in the marginal basin. Detrital zircons from the autochthonous and parautochthonous Andrelândia Group, deposited on the southern margin of the São Francisco Craton, yielded a provenance pattern similar to that of the allochthonous units. This result implies that 1.6-1.2Ga source rocks must be present in the São Francisco Craton. They could be located either in the cratonic area, which is mostly covered by the Neoproterozoic epicontinental deposits of the Bambuí Group, or in the outer paleo-continental margin, buried under the allochthonous units of the Brasília belt. Crustal melting and generation of syntectonic crustal granites and migmatisation at ca. 630Ma mark the orogenic event that started with westward subduction of the São Francisco plate and ended with continental collision against the Paraná block (and Goiás terrane). Continuing collision led to the exhumation and cooling of the Araxá and Passos metamorphic nappes, as indicated by monazite ages of ca. 605Ma and mark the final stages of tectonometamorphic activity in the southern Brasília belt. Whilst continent-continent collision was proceeding on the western margin of the São Francisco Craton along the southern Brasília belt, eastward subduction in the East was generating the 634-599Ma Rio Negro magmatic arc which collided with the eastern São Francisco margin at 595-560Ma, much later than in the Brasília belt. Thus, the tectonic effects of the Ribeira belt reached the southernmost sector of the Brasília belt creating a zone of superposition. The thermal front of this event affected the proximal Andrelândia Group at ca. 588Ma, as indicated by monazite age. The participation of the Amazonian craton in the assembly of western Gondwana occurred at 545-500Ma in the Paraguay belt and ca. 500Ma in the Araguaia belt. This, together with the results presented in this work lead to the conclusion that the collision between the Paraná block and Goiás terrane with the São Francisco Craton along the Brasília belt preceded the accretion of the Amazonian craton by 50-100 million years. © 2003 Elsevier B.V. All rights reserved.
Resumo:
A pioneer GPR - Ground Penetrating Radar - survey was carried out in the Pantanal of Mato Grosso State, westcentral region of Brazil. Fieldwork acquisitions were carried out in February/2001 and August/2002 in order to understand avulsion processes that are occurring within the Taquari alluvial megafan. The main subjects were to map channel, crevasses and floodplain morphology, as well as active sedimentary bedforms. Many GPR profiles were surveyed in the medium and lower Taquari River course. Subaqueous megaripples and exposed sand bars inside the Taquari channel were identified in the medium fan area. Similar features were observed in the lower fan channels, where there are also many crevasses in the marginal levees. During the flooding seasons the flow splays out in the floodplain where new distributary channels are being formed. As shown by GPR data, in the lower fan the Taquari channel is topographically higher than the adjacent floodplain, situation in which avulsion is a natural process of river course shifting. The lack of information about river morphology and dynamics is a major strain to better understand the sediment transport and the avulsion processes in the Taquari megafan. In this context, the GPR data obtained in wet and dry seasons, integrated to sedimentological information, have been very important to characterize the fluvial dynamics and the avulsion phenomena.
Resumo:
Around the southern margins of the São Francisco Craton, there is a zone of tectonic interference between the Brasília belt to the west and the younger Ribeira belt to the east. U-Pb monazite and 40Ar/39Ar cooling age determinations carried out in the area reveal the cooling histories of these belts and the timing of tectonic overprint, unraveling the final stages of Brasiliano Orogeny in SE Brazil. The U-Pb monazite data from migmatized paragneisses and late-stage pegmatites in the Socorro-Guaxupé Nappe System of the southern Brasília belt show that migmatization peaked between ca. 613±1 and 607±3 Ma. 40Ar/39Ar biotite and muscovite ages of paragneisses and schists in this area indicate that the northern high-grade core of the Nappe System (Guaxupé Domain) was uplifted and cooled through the 350°C isotherm between 599±1 and 587±1 Ma. In contrast, samples from the southern high-grade core of the Nappe System, the Socorro Domain, south of the Jacutinga shear zone, yields a broader and younger spectrum of 40Ar/39Ar biotite ages between 571±1 and 562±1 Ma, attributed to a later uplift and cooling of the crust. The cooling ages can be assigned to local resetting of the 40Ar/39Ar system during transpressive tectonic overprint due to reactivation as a result of collision of the Ribeira belt. A younger group of 40Ar/39Ar mica ages (537±1 to 521±1Ma) in schists of the Socorro Domain, are associated with transpressional structures of the Ribeira belt. Rock samples from the Jacutinga and Três Corações shear zones, yield 40Ar/39Ar biotite-muscovite ages around 520 Ma. These are typical cooling ages of the Ribeira belt, and are interpreted to mark the western limit of the Ribeira belt transpressional regime within the Brasília belt. The youngest biotite-muscovite cooling ages in schists of the Socorro Domain, between 510±2 and 491±1 Ma, mark the final cooling and exhumation of that part of the Brasília belt.