85 resultados para process conditions
Resumo:
The adaptability of wild coriander (Eryngium foetidum L.) a seasoning and medicinal herb indigenous of the Amazon region was evaluated in a subtropical city of Sao Paulo, Brazil. Germination of seeds was extremely irregular with the first seeds germinating 10 days after the sowing, but the process lasted 90 days. The exploitation of this specie is possible in subtropical conditions without interruption of production but further study on the feasibility elimination of seed and flower are necessary to permit a greater yield of foliage.
Resumo:
Ocimum gratissimum seed germination (% germination and vigor) has been found as phytochrome dependent, having a typical High Irradiant Response (HIR). Seven treatments were tested: daylight (DL), red (R), far-red (FR), blue (B), green (G), dark (DK), and reversible (RVB). No statistical difference among the DL, R, FR, B, and G were found. DK and RVB were statistically equal and presented the lowest results. The germination also occurred in the DK treatment but in non-useful rates, and it was nonreversible in the RVB treatment. It allows these seeds to be classified as positively photoblastic. The minimum energy need to initiate the germination was evaluated by a fluency-response curve. It plotted four different exposition times to R light (1 second, 60 seconds, 1 hour, and 13 hours) against percent germination. Useful germination occurred only after 1 hour, confirming the high energy needed to incite the process. The germination rate increased with the raise of the photoequilibrium (j). The high positive correlation index found confirms the phytochrome influence in this process. Facing all the results presented here, it is suggested to sow these seeds under direct and highly intense sunlight. It is preferable to avoid places exposed to variations in the shading, because inhibition induced by dense shade effects (low R/FR ration and consequently low j established) were demonstrated irreversible, and it can lead to undesirable loss of the germination power.
Resumo:
In this study, the photoelectrocatalytic behavior of bromide and generation of bromine using TiO2 was investigated in the separate anode and cathode reaction chambers. Our results show that the generation of bromine begins around a flatband potential of -0.34 V vs. standard calomel electrode (SCE) at pH 3.0 under UV illumination and increases with an increase in positive potential, finally reaching a steady-state concentration at 1.0 V vs. SCE. Maximum bromine formation occurs over the range of pH 4-6, decreasing sharply at conditions where the pH > 7. © 2003 Elsevier Ltd. All rights reserved.
Resumo:
The effect of combining the photocatalytic processes using TiO 2 and the photo-Fenton reaction with Fe3+ or ferrioxalate as a source of Fe2+ was investigated in the degradation of 4-chlorophenol (4CP) and dichloroacetic acid (DCA) using solar irradiation. Multivariate analysis was used to evaluate the role of three variables: iron, H2O2 and TiO2 concentrations. The results show that TiO2 plays a minor role when compared to iron and H2O2 in the solar degradation of 4CP and DCA in the studied conditions. However, its presence can improve TOC removal when H2O2 is totally consumed. Iron and peroxide play major roles, especially when Fe(NO3)3 used in the degradation of 4CP. No significant synergistic effect was observed by the addition of TiO 2 in this process. On the other hand, synergistic effects were observed between FeOx and TiO2 and between H 2O2 and TiO2 in the degradation of DCA. © IWA Publishing 2004.
Resumo:
Different measurements were performed in cross-linked polyethylene (XLPE) employed as insulating material in coaxial cables that were field-aged and laboratory-aged under multi-stressing conditions at room temperature. Samples were peeled from the XLPE cable insulation in three different positions: just below the external semiconductor layer (outer layer), in the middle (middle layer) and just above the internal semiconductor layer of the cable (inner layer). The imaginary part of the electric susceptibility showed three peaks that obey the Dissado-Hill model. For laboratory-aged XLPE samples peeled from the inner and from the middle positions the peak at very low frequency region increased while in samples from the outer position a quasi-DC conduction process was observed. In medium frequency range a broadening of the peak was observed for all samples. Viscoelastic properties determined through dynamic mechanical analysis suggested that the aging generates processes that promoted changes of the crystallinity and the cross-linking degrees of the polymer. Fourier transform infrared spectroscopy (FTIR) measurements revealed an increase of oxidation products (esters), evidence of polar residues of the bow-tie tree and the presence of cross-linking by-products (acetophenone). Optical and scanning electronic microscope (SEM) measurements in aged samples revealed the existence of voids and bow-tie trees that were formed during aging in the middle region of the cable.
Resumo:
The behavior of the minimum quantity lubricant (MQL) technique was analyzed under different lubricating and cooling conditions when grinding ABNT 4340 steel. The comparative analysis of the residual stress values showed that residual compressive stresses were obtained under all the lubrication/cooling conditions and types of abrasive tools employed. The highest residual compressive stress obtained with the aluminum oxide grinding wheel with MQL under the condition of V= 30m/s for air and V= 40ml/h for lubricant was -376MPa against the -160MPa attained with conventional cooling, representing a 135% increase in residual compressive stress. The results show that method and quantity of lubricant and cooling are factors that influence the grinding process.
Resumo:
The α → β phase transformation of PVDF through the stretching process at different temperatures was investigated. The optimum stretching conditions were studied and characterised by infrared spectroscopy and differential scanning calorimetry. The maximum β-phase content was achieved at 80°C and a stretch ratio of 5. These samples were poled at several electric fields by the corona charge method. The effect of the electric field on the phase transformation was studied by infrared spectroscopy.
Resumo:
In this work fresh cables were laboratory aged under multi-stressing conditions at room temperature. Foils were peeled from cables, with approximately 150 ?m thickness, from the outer, middle and inner positions of the XLPE cable insulating layer. For samples obtained from the outer cable layer position, an increasing near-permanent electrical conduction process with aging time was observed. At the middle and inner cable layer positions a flat-loss relaxation process was observed becoming a dominating process on the ageing. In addition, PEA results confirmed that degradation in the outer region of the XLPE cables arises from the simultaneous presence of dipoles and injected space charge that distorts the internal electric field on the ageing.
Resumo:
SiC fiber-reinforced SiC matrix composite (SiCf/SiC) is one of the leading candidates in ceramic materials for engineering applications due to its unique combination of properties such as high thermal conductivity, high resistance to corrosion and working conditions. Fiber-reinforced composites are materials which exhibit a significant improvement in properties like ductility in comparison to the monolithic SiC ceramic. The SiCf/SiC composite was obtained from a C/C composite precursor using convertion reaction under high temperature and controlled atmosphere. In this work, SiC phase presented the stacking faults in the structure, being not possible to calculate the unit cell size, symmetry and bond lengths but it seem equal card number 29-1129 of JCPDS.
Resumo:
Automotive parts manufacture by machining process using silicon nitride-based ceramic tool development in Brazil already is a reality. Si 3N4-based ceramic cutting tools offer a high productivity due to their excellent hot hardness, which allows high cutting speeds. Under such conditions the cutting tool must be resistant to a combination of mechanical, thermal and chemical attacks. Silicon nitride based ceramic materials constitute a mature technology with a very broad base of current and potential applications. The best opportunities for Si3N 4-based ceramics include ballistic armor, composite automotive brakes, diesel particulate filters, joint replacement products and others. The goal of this work was to show latter advance in silicon nitride manufacture and its recent evolution on machining process of gray cast iron, compacted graphite iron and Ti-6Al-4V. Materials characterization and machining tests were analyzed by X-Ray Diffraction, Scanning Electron Microscopy, Vickers hardness and toughness fracture and technical norm. In recent works the authors has been proved to advance in microstructural, mechanical and physic properties control. These facts prove that silicon nitride-based ceramic has enough resistance to withstand the impacts inherent to the machining of gray cast iron (CI), compacted graphite iron (CGI) and Ti-6Al-4V (6-4). Copyright © 2008 SAE International.
Resumo:
Intestinal pathogens are exposed to various stress conditions during their infectious cycle. Anaerobiosis, one of such hostile condition, is offered by the host within gut and intestinal lumen, where survival, multiplication and entry into intestinal epithelial cells are priority for the invasion of the pathogen. The fumarate reductase (frdABCD), dimethyl sulfoxide (DMSO)-trimethylamine N-oxide (TMAO) reductase (dmsABC), and nitrate reductase (narGHIJ) operons in Salmonella Typhimurium (STM) encode enzymes involved in anaerobic respiration to the electron acceptors fumarate, DMSO, TMAO, and nitrate, respectively. They are regulated in response to nitrate and oxygen availability and changes in cell growth rate. Vitamin B12 (cobalamin) is synthesized by Salmonella Typhimurium only under anaerobic growth conditions used as a cofactor in four known reactions. The deletion of cobS and cbiA genes prevent any form of cobalamin production. In the present study we evaluate the infection of birds by mutants of STM, with the anaerobic respiratory system committed by mutations in the genes: narG, napA, cobS, cbiA, frdA, dmsA, and torC. Virulence was assessed by oral inoculation of groups of one-day-old broilers with 0.1 mL of culture contained 10 8 colony forming units (CFU)/mL or diluted at 10 -3 and 10 -2 of strains mutants of Salmonella Typhimurium. Clinical signs and mortality were recorded over a period of 21 days. In general, the symptoms of chickens infected with the mutant strains were similar to those presenting by control birds. Except for STMNalr cbiA, all showed reduced capacity to cause mortality in comparison with the original strain. The mortality of group of chickens infected with STMNal r △narG, STMNal r △frdA, STMNal r △dmsA and STMNal r △cobS△cbiA showed significant decrease in mortality compared to control group (p<0.05).
Resumo:
This work considers nonsmooth optimal control problems and provides two new sufficient conditions of optimality. The first condition involves the Lagrange multipliers while the second does not. We show that under the first new condition all processes satisfying the Pontryagin Maximum Principle (called MP-processes) are optimal. Conversely, we prove that optimal control problems in which every MP-process is optimal necessarily obey our first optimality condition. The second condition is more natural, but it is only applicable to normal problems and the converse holds just for smooth problems. Nevertheless, it is proved that for the class of normal smooth optimal control problems the two conditions are equivalent. Some examples illustrating the features of these sufficient concepts are presented. © 2012 Springer Science+Business Media New York.
Resumo:
In the Nilo Coelho irrigation scheme, Brazil, the natural vegetation has been replaced by irrigated agriculture, bringing importance for the quantification of the effects on the energy exchanges between the mixed vegetated surfaces and the lower atmosphere. Landsat satellite images and agro-meteorological stations from 1992 to 2011 were used together, for modelling these exchanges. Surface albedo (α0), NDVI and surface temperature (T0) were the basic remote sensing retrieving parameters necessary to calculate the latent heat flux (λE) and the surface resistance to evapotranspiration (rs) on a large scale. The daily net radiation (Rn) was obtained from α0, air temperature (Ta) and short-wave transmissivity (τsw) throughout the slob equation, allowing the quantification of the daily sensible heat flux (H) by residual in the energy balance equation. With a threshold value for rs, it was possible to separate the energy fluxes from crops and natural vegetation. The averaged fractions of Rn partitioned as H and λE, were in average 39 and 67%, respectively. It was observed an increase of the energy used for the evapotranspiration process inside irrigated areas from 51% in 1992 to 80% in 2011, with the ratio λE/Rn presenting an increase of 3 % per year. The tools and models applied in the current research, can subsidize the monitoring of the coupled climate and land use changes effects in irrigation perimeters, being valuable when aiming the sustainability of the irrigated agriculture in the future, avoiding conflicts among different water users. © 2012 SPIE.
Resumo:
This paper proposes a response surface methodology to evaluate the influence of the particle size and temperature as variables and their interaction on the sulfation process using two Brazilian limestones, a calcite (ICB) and a dolomite (DP). Experiments were performed according to an experimental design [central composite rotatable design (CCRD)] carried out on a thermogravimetric balance and a nitrogen adsorption porosimeter. In the SO 2 sorption process, DP was shown to be more efficient than ICB. The best results for both limestones in relation to conversion and Brunauer-Emmett-Teller (BET) surface area were obtained under central point conditions (545 μm and 850 C for DP and 274 μm and 815 C for ICB). The optimal values for conversion were 52% for DP and 37% for ICB. For BET surface area, the optimal values were 35 m2 g-1 for DP and 45 m2 g-1 for ICB. A relationship between conversion and pore size distribution has been established. The experiments that showed higher conversions also exhibited more pores in the region between 20 and 150 Å and larger BET surface area, indicating that the amount of smaller pores may be an important factor in the reactivity of limestones. © 2013 American Chemical Society.
Resumo:
In this study, the flocculation process in continuous systems with chambers in series was analyzed using the classical kinetic model of aggregation and break-up proposed by Argaman and Kaufman, which incorporates two main parameters: K (a) and K (b). Typical values for these parameters were used, i. e., K (a) = 3.68 x 10(-5)-1.83 x 10(-4) and K (b) = 1.83 x 10(-7)-2.30 x 10(-7) s(-1). The analysis consisted of performing simulations of system behavior under different operating conditions, including variations in the number of chambers used and the utilization of fixed or scaled velocity gradients in the units. The response variable analyzed in all simulations was the total retention time necessary to achieve a given flocculation efficiency, which was determined by means of conventional solution methods of nonlinear algebraic equations, corresponding to the material balances on the system. Values for the number of chambers ranging from 1 to 5, velocity gradients of 20-60 s(-1) and flocculation efficiencies of 50-90 % were adopted.