67 resultados para problem based research


Relevância:

40.00% 40.00%

Publicador:

Resumo:

The present paper proposes a new hybrid multi-population genetic algorithm (HMPGA) as an approach to solve the multi-level capacitated lot sizing problem with backlogging. This method combines a multi-population based metaheuristic using fix-and-optimize heuristic and mathematical programming techniques. A total of four test sets from the MULTILSB (Multi-Item Lot-Sizing with Backlogging) library are solved and the results are compared with those reached by two other methods recently published. The results have shown that HMPGA had a better performance for most of the test sets solved, specially when longer computing time is given. © 2012 Elsevier Ltd.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Image restoration is a research field that attempts to recover a blurred and noisy image. Since it can be modeled as a linear system, we propose in this paper to use the meta-heuristics optimization algorithm Harmony Search (HS) to find out near-optimal solutions in a Projections Onto Convex Sets-based formulation to solve this problem. The experiments using HS and four of its variants have shown that we can obtain near-optimal and faster restored images than other evolutionary optimization approach. © 2013 IEEE.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The capacitated redistricting problem (CRP) has the objective to redefine, under a given criterion, an initial set of districts of an urban area represented by a geographic network. Each node in the network has different types of demands and each district has a limited capacity. Real-world applications consider more than one criteria in the design of the districts, leading to a multicriteria CRP (MCRP). Examples are found in political districting, sales design, street sweeping, garbage collection and mail delivery. This work addresses the MCRP applied to power meter reading and two criteria are considered: compactness and homogeneity of districts. The proposed solution framework is based on a greedy randomized adaptive search procedure and multicriteria scalarization techniques to approximate the Pareto frontier. The computational experiments show the effectiveness of the method for a set of randomly generated networks and for a real-world network extracted from the city of São Paulo. © 2013 Elsevier Ltd.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)