136 resultados para priming effect of soil organic


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The effect of swine manure fertilization on the water quality of zooplankton artificial culture in two ponds was measured in diel cycles on different months (October 1999, January and March 2000). Fertilization affected directly water quality; values for total phosphorus were above 1.4 mgL(-1) and maximum rates for ammonia reached 108 mu gL(-1). Zooplankton community comprised four species, namely, Brachionus calyciflorus, B. falcatus, Moina sp. and Thermocyclops sp. B. falcatus (Rotifera) and Moina sp (Cladocera) were dominant respectively in January and in March. There was no difference in abundance of zooplankton between the two ponds (p>0.05), although adult cyclopoid Thermocyclops sp was different between diel cycles (p<0.05). There were significant differences (p<0.05) in dissolved oxygen, ammonia, total phosphorus, orthophosphate, nitrite and nitrate between ponds. In fact, only dissolved oxygen and pH were significantly different (p<0.05) between the ponds' surface and bottom. Organic fertilization also provided greater amount of nutrients and higher pH and conductivity, coupled to greater oscillations in the concentration of dissolved oxygen, directly affecting the zooplanktonic composition.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The mineral and organic phases of mineralized dentin contribute co-operatively to its strength and toughness. This study tested the null hypothesis that there is no difference in nano-dynamic mechanical behavior (complex modulus-E*; loss modulus-E ''; storage modulus-E'; in GPa) of dentin hybrid layers (baseline: E*, 3.86 +/- 0.24; E '', 0.23 +/- 0.05; E', 3.85 +/- 0.24) created by an etch-and-rinse adhesive in the presence or absence of biomimetic remineralization after in vitro aging. Using scanning probe microscopy and nano-dynamic mechanical analysis, we demonstrated that biomimetic remineralization restored the nano-dynamic mechanical behavior of heavily remineralized, resin-sparse regions of dentin hybrid layers (E*, 19.73 +/- 3.85; E '', 8.75 +/- 3.97; E', 16.02 +/- 2.58) to those of the mineralized dentin base (E*, 19.20 +/- 2.42; E '', 6.57 +/- 1.96; E', 17.39 +/- 2.0) [p > 0.05]. Conversely, those resin-sparse, water-rich regions degraded in the absence of biomimetic remineralization, with significant decline [p < 0.05] in their complex and storage moduli (E*, 0.83 +/- 0.35; E '', 0.88 +/- 0.24; E', 0.62 +/- 0.32). Intrafibrillar apatite deposition preserves the integrity of resin-sparse regions of hybrid layers by restoring their nanomechanical properties to those exhibited by mineralized dentin.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Conjugated polymers have been subject of great interest in the recent literature from both fundamental point of view and applied science perspective. Among the several types of conjugated polymers used in recent investigations, polythiophene and its derivatives have attracted considerable attention over the past 20 years due to their high mobility and other remarkable solid-state properties. They have potential applications in many fields, such as microelectronic devices, catalysts, organic field-effect transistors, chemical sensors, and biosensors. They have been studied as gas and volatile organic compounds (VOCs) sensors using different principles or transduction techniques, such as optical absorption, conductivity, and capacitance measurements. In this work, we report on the fabrication of gas sensors based on a conducting polymer on an interdigitated gold electrode. We use as active layer of the sensor a polythiophene derivative: poly (3-hexylthiophene) (P3HT) and analyzed its conductivity as response for exposure to dynamic flow of saturated vapors of six VOCs [n-hexane, toluene, chloroform, dichloromethane, methanol, and tetrahydrofuran (THE)]. Different responses were obtained upon exposure to all VOCs, THF gave the higher response while methanol the lower response. The influence of moisture on the measurements was also evaluated. (C) 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Precursor solutions for Pb(Mg1/3Nb2/3)O-3 (PMN) synthesis were obtained by Pechini's method. The influence of the concentration of organic materials on the phase formation has been studied. For this purpose, PMN solutions were prepared with different precursors and were characterized by thermogravimetric and differential thermal analysis. The obtained solutions were deposited onto a Si (100) substrate by dip coating and pre-treated in a hot plate at 300 degreesC for 1 h. The films were annealed at 600, 700, 800 and 900 degreesC for 1 h and characterized by X-ray diffraction. The perovskite phase was formed after annealing at 600 and 700 degreesC when the solution of PMN was prepared with a lower amount of organic material and starting with mobium oxide. By increasing the temperature to 800 or 900 degreesC, only the formation of pyrochlore phase was observed. With the solution prepared from mobium ethoxide, only the presence of pyrochlore phase was observed independently of the annealing temperature. (C) 2002 Elsevier B.V. B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The effect of magnesium addition on the phase formation and electric properties of LiNbO3 powder prepared from polymeric precursor was analyzed. It was shown that the unit-cell volume of the rhombohedral phase decreased with increasing magnesium concentration. Small amounts of secondary phases were observed in LiNbO3 powder doped with 5 and 10 mol% Mg+2. These results indicated that the Mg+2 ion was substituted for niobium ion in the rhombohedral phase. The addition of Mg+2 promotes densification of LiNbO3 ceramics. It was noticed that the increase in additive concentration leads to a decrease of electric properties, K-p and d(33). This is due to formation of LiNb3O8 and MgNb2O6 phases at the grain boundaries. (C) 2002 Elsevier B.V. Ltd and Techna S.r.l. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The electrical conductivity of Mn doped SnO2 systems prepared by an organic route (Pechini's method) has been investigated as a function of antimony and niobium concentration. The conductivity increases with the increase of both concentration ions, however, in a different manner. While the conductivity of niobium doped ceramics increases with the power of 1.6 for the entire range of concentrations studied (0.01-0.7 mol%), the conductivity of antimony doped ceramics increases with the power of 1.9 in the range 0.01-0.05 mol% of Sb; 3.7 in the range 0.05-0.30 mol% and 1.8 in the range 0.30-0.70 mol%. This behavior is attributed to the existence of two stable oxidation states for antimony: Sb3+ and Sb5+, while for niobium there is only one: Nb5+. The power of 3.7 for Sb would be related to the segregation of this ion on the grain boundary accompanied by an additional contribution coming from the substitution of Sn2+ by Sb3+ on the grain surface.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

An organic-inorganic hybrid coating was developed to improve the corrosion resistance of the aluminum alloy AA 2024-T3. Organic and inorganic coatings derived from glycidoxypropyltrimethoxysilane (GPTMS) and aluminum tri-sec-butoxide Al((OBu)-Bu-s)(3), with different cerium contents, were deposited onto aluminum by dip-coating process. Corrosion resistance and mechanical properties were investigated by electrochemical impedance measurements and nano-indentation respectively. An optimal cerium concentration of 0.01 M was evidenced. To correlate and explain the hybrid coating performances in relation to the cerium content, NMR experiments were performed. It has been shown that when the cerium concentration in the hybrid is higher than 0.01 M there are important modifications in the hybrid structure that account for the mechanical properties and anti-corrosion behavior of the sol-gel coating. (C) 2012 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A emissão de CO2 do solo apresenta alta variabilidade espacial, devido à grande dependência espacial observada nas propriedades do solo que a influenciam. Neste estudo, objetivou-se: caracterizar e relacionar a variabilidade espacial da respiração do solo e propriedades relacionadas; avaliar a acurácia dos resultados fornecidos pelo método da krigagem ordinária e simulação sequencial gaussiana; e avaliar a incerteza na predição da variabilidade espacial da emissão de CO2 do solo e demais propriedades utilizando a simulação sequencial gaussiana. O estudo foi conduzido em uma malha amostral irregular com 141 pontos, instalada sobre a cultura de cana-de-açúcar. Nesses pontos foram avaliados a emissão de CO2 do solo, a temperatura do solo, a porosidade livre de água, o teor de matéria orgânica e a densidade do solo. Todas as variáveis apresentaram estrutura de dependência espacial. A emissão de CO2 do solo mostrou correlações positivas com a matéria orgânica (r = 0,25, p < 0,05) e a porosidade livre de água (r = 0,27, p <0,01) e negativa com a densidade do solo (r = -0,41, p < 0,01). No entanto, quando os valores estimados espacialmente (N=8833) são considerados, a porosidade livre de água passa a ser a principal variável responsável pelas características espaciais da respiração do solo, apresentando correlação de 0,26 (p < 0,01). As simulações individuais propiciaram, para todas as variáveis analisadas, melhor reprodução das funções de distribuição acumuladas e dos variogramas, em comparação à krigagem e estimativa E-type. As maiores incertezas na predição da emissão de CO2 estiveram associadas às regiões da área estudada com maiores valores observados e estimados, produzindo estimativas, ao longo do período estudado, de 0,18 a 1,85 t CO2 ha-1, dependendo dos diferentes cenários simulados. O conhecimento das incertezas gerado por meio dos diferentes cenários de estimativa pode ser incluído em inventários de gases do efeito estufa, resultando em estimativas mais conservadoras do potencial de emissão desses gases.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The objective was to evaluate the differences between distinct types of litter material and their combinations in the dynamics of degradation on the organic matter fractions and the quality of the final compound. The treatments were established according to material used as substrate for broiler litter: treatment 1 - rice husks; 2 - sugar cane bagasse; 3 - wood shavings; 4 - wood shavings + sugar cane bagasse; 5 - rice husks + sugar cane bagasse; and 6 - Napier grass. The following variables were monitored: temperature, levels of total solids (TS), volatile solids (VS), mass and volume of the pile, fibrous fraction, and levels and reductions of N, P and K during the process. Piles formed with Napier grass and sugar cane bagasse presented the highest average temperatures during composting. The greater average reductions in TS and VS were attained in piles with sugar cane bagasse (68.12 and 73.07%, for TS and VS, respectively). The reductions of greatest volume occurred in piles with sugar cane bagasse (52.08%), followed by Napier grass (50.56%). Poultry litters composed of rice husks and wood shavings presented 13.21 and 10.23% of lignin, respectively, which contributed to the lower degradation of fibrous fraction and degradability. Substrates with lower lignin content were those with greatest organic matter degradation rate and had reduced losses of N levels during the process. Composting performance is affected by the initial substrate used to compose the poultry litter.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Sowing is a critical time in the cycle of a crop and the seeds are frequently exposed to adverse conditions that may compromise the establishment of seedlings in the field. on this basis, the objective of the present study was to determine the effect of types of environmental stress on the emergence of sunflower, maize and soybean seeds with different levels of vigor. High vigor seeds were artificially aged in order to obtain medium and low vigor seeds and then they were sown in clay soil in plastic boxes and submitted to the following types of environmental stress during the germination process : 1) high temperature (35degreesC), 2) low temperature (15 or 18degreesC), 3) water excess (Psi > -0.0001 MPa), 4) water deficiency (Psi approximately equal to -1.1; -1.2 and -0.6 MPa for sunflower, maize and soybean, respectively), 5) sowing at a depth of 7 cm and 6) pathogenic infection of sunflower seeds with Alternaria helianthi, of maize seeds with Fusarium moniliforme and of soybean seeds with Colletotrichum dematium, var. truncata. The results were compared to those obtained with controls sown under optimal condition. It was concluded that: 1) the effect of seed vigor on emergence depends on the type of enviromental stress to which the seeds are exposed, 2) the stress to which the the seeds demonstrated highest sensitivity varied with species and 3) high temperature stress was the one that most impaired the emergence of the three species.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Hybrid transparent and flexible siloxane-polypropyleneglycol (PPG) materials with covalent bonds between the inorganic (siloxane) and organic (polymeric) phases were prepared by sol-gel process. In order to improve the quality of the mechanical properties of these materials, different amounts of methyltriethoxysilane (MTES) were added to the initial sol. The effect of MTES addition on the structure of the composites was studied by Small-Angle X-Ray Scattering (SAXS) and Si-29 Nuclear Magnetic Resonance (Si-29 NMR). In absence of MTES, SAXS spectra exhibit a peak that is assigned to spatial correlation due to short range order between the siloxane clusters embedded in the polymeric phase. The experimental results indicate that, for low MTES concentrations ([MTES]/[O] less than or equal to 0.8, O: ether-type oxygen of PPG), the silicon species resulting from hydrolysis and condensation of MTES fill the open spaces between polymeric chains, interacting with the ether-type oxygens. For larger MTES content ([MTES]/[O] greater than or equal to 0.8), the number of free ether-type oxygen sites avalaible for reaction with such silicon species is not large enough. Consequently, a fraction of silicon species resulting from MTES addition graft to siloxane clusters formed by hydrolysis and condensation of the hybrid precursor. For all MTES concentrations the condensation degree of the siloxane phase, determined from Si-29 NMR spectroscopy, is high (> 69%), as expected under neutral pH synthesis conditions.