155 resultados para power system identification
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
A combinatorial mathematical model in tandem with a metaheuristic technique for solving transmission network expansion planning (TNEP) using an AC model associated with reactive power planning (RPP) is presented in this paper. AC-TNEP is handled through a prior DC model while additional lines as well as VAr-plants are used as reinforcements to cope with real network requirements. The solution of the reinforcement stage can be obtained by assuming all reactive demands are supplied locally to achieve a solution for AC-TNEP and by neglecting the local reactive sources, a reactive power planning (RPP) will be managed to find the minimum required reactive power sources. Binary GA as well as a real genetic algorithm (RCA) are employed as metaheuristic optimization techniques for solving this combinatorial TNEP as well as the RPP problem. High quality results related with lower investment costs through case studies on test systems show the usefulness of the proposal when working directly with the AC model in transmission network expansion planning, instead of relaxed models. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
This paper presented the particle swarm optimization approach for nonlinear system identification and for reducing the oscillatory movement of the nonlinear systems to periodic orbits. We analyzes the non-linear dynamics in an oscillator mechanical and demonstrated that this model has a chaotic behavior. Chaos control problems consist of attempts to stabilize a chaotic system to an equilibrium point, a periodic orbit, or more general, about a given reference trajectory. This approaches is applied in analyzes the nonlinear dynamics in an oscillator mechanical. The simulation results show the identification by particle swarm optimization is very effective.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
This paper presents two mathematical models and one methodology to solve a transmission network expansion planning problem considering uncertainty in demand. The first model analyzed the uncertainty in the system as a whole; then, this model considers the uncertainty in the total demand of the power system. The second one analyzed the uncertainty in each load bus individually. The methodology used to solve the problem, finds the optimal transmission network expansion plan that allows the power system to operate adequately in an environment with uncertainty. The models presented are solved using a specialized genetic algorithm. The results obtained for several known systems from literature show that cheaper plans can be found satisfying the uncertainty in demand.
Resumo:
Linear Matrix Inequalities (LMIs) is a powerful too] that has been used in many areas ranging from control engineering to system identification and structural design. There are many factors that make LMI appealing. One is the fact that a lot of design specifications and constrains can be formulated as LMIs [1]. Once formulated in terms of LMIs a problem can be solved efficiently by convex optimization algorithms. The basic idea of the LMI method is to formulate a given problem as an optimization problem with linear objective function and linear matrix inequalities constrains. An intelligent structure involves distributed sensors and actuators and a control law to apply localized actions, in order to minimize or reduce the response at selected conditions. The objective of this work is to implement techniques of control based on LMIs applied to smart structures.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The ability of neural networks to realize some complex nonlinear function makes them attractive for system identification. This paper describes a novel barrier method using artificial neural networks to solve robust parameter estimation problems for nonlinear model with unknown-but-bounded errors and uncertainties. This problem can be represented by a typical constrained optimization problem. More specifically, a modified Hopfield network is developed and its internal parameters are computed using the valid-subspace technique. These parameters guarantee the network convergence to the equilibrium points. A solution for the robust estimation problem with unknown-but-bounded error corresponds to an equilibrium point of the network. Simulation results are presented as an illustration of the proposed approach.
Resumo:
Indices that report how much a contingency is stable or unstable in an electrical power system have been the object of several studies in the last decades. In some approaches, indices are obtained from time-domain simulation; others explore the calculation of the stability margin from the so-called direct methods, or even by neural networks.The goal is always to obtain a fast and reliable way of analysing large disturbance that might occur on the power systems. A fast classification in stable and unstable, as a function of transient stability is crucial for a dynamic security analysis. All good propositions as how to analyse contingencies must present some important features: classification of contingencies; precision and reliability; and efficiency computation. Indices obtained from time-domain simulations have been used to classify the contingencies as stable or unstable. These indices are based on the concepts of coherence, transient energy conversion between kinetic energy and potential energy, and three dot products of state variable. The classification of the contingencies using the indices individually is not reliable, since the performance of these indices varies with each simulated condition. However, collapsing these indices into a single one can improve the analysis significantly. In this paper, it is presented the results of an approach to filter the contingencies, by a simple classification of them into stable, unstable or marginal. This classification is performed from the composite indices obtained from step by step simulation with a time period of the clearing time plus 0.5 second. The contingencies originally classified as stable or unstable do not require this extra simulation. The methodology requires an initial effort to obtain the values of the intervals for classification, and the weights. This is performed once for each power system and can be used in different operating conditions and for different contingencies. No misplaced classification o- - ccurred in any of the tests, i.e., we detected no stable case classified as unstable or otherwise. The methodology is thus well fitted for it allows for a rapid conclusion about the stability of th system, for the majority of the contingencies (Stable or Unstable Cases). The tests, results and discussions are presented using two power systems: (1) the IEEE17 system, composed of 17 generators, 162 buses and 284 transmission lines; and (2) a South Brazilian system configuration, with 10 generators, 45 buses and 71 lines.
Resumo:
In this work, a Finite Element Method treatment is outlined for the equations of Magnetoaerodynamics. In order to provide a good basis for numerical treatment of Magneto-aerodynamics, a full version of the complete equations is presented and FEM contribution matrices are deduced, as well as further terms of stabilization for the compressible flow case.
Resumo:
Reliability of power supply is related, among other factors, to the control and protection devices allocation in feeders of distribution systems. In this way, optimized allocation of sectionalizing switches and protection devices in strategic points of distribution circuits, improves the quality of power supply and the system reliability indices. In this work, it is presented a mixed integer non-linear programming (MINLP) model, with real and binary variables, for the sectionalizing switches and protection devices allocation problem, in strategic sectors, aimed at improving reliability indices, increasing the utilities billing and fulfilling exigencies of regulatory agencies for the power supply. Optimized allocation of protection devices and switches for restoration, allows that those faulted sectors of the system can be isolated and repaired, re-managing loads of the analyzed feeder into the set of neighbor feeders. Proposed solution technique is a Genetic Algorithm (GA) developed exploiting the physical characteristics of the problem. Results obtained through simulations for a real-life circuit, are presented. © 2004 IEEE.