77 resultados para plant functional traits
Resumo:
The Atlantic Forest domain, one of the 25 world's hotspots for biodiversity, has experienced dramatic changes in its landscape. While the loss of species diversity is well documented, functional diversity has not received the same amount of attention. In this study, we evaluated functional diversity of insects in streams utilizing three indices: functional diversity (FD), functional dispersion (FDis), and functional divergence (FDiv), seeking to understand the roles of three predictor sets in explaining functional patterns: (1) bioclimatic and landscape variables; (2) spatial variables; and (3) local environmental variables. We determined the amount of variation in different measures of functional diversity that was explained by each predictor set and their interplays using variation partitioning. Our study showed that variation in functional diversity is better explained by a set of variables linked to different scales dependent on spatial structures, indicating the importance of landscape and mainly environmental variables in the functional organization of aquatic insect communities, and that the relative importance of predictor sets depends on the indices considered. Variation in FD was better explained by the interplay among the three predictor sets and by local environmental variables, whereas variation in FDis was better explained by spatial variables and by the interplay between environmental and spatial variables. Variation in FDiv was not significantly explained by any predictors. Our study adds more evidence on the harmful effects caused by landscape changes on biodiversity in the Atlantic Forest, suggesting that these effects also influence the functional organization of stream insect communities. © 2013 The Author(s) Journal compilation © 2013 by The Association for Tropical Biology and Conservation.
Resumo:
Biogeographical systems can be analyzed as networks of species and geographical units. Within such a biogeographical network, individual species may differ fundamentally in their linkage pattern, and therefore hold different topological roles. To advance our understanding of the relationship between species traits and large-scale species distribution patterns in archipelagos, we use a network approach to classify birds as one of four biogeographical species roles: peripherals, connectors, module hubs, and network hubs. These roles are based upon the position of species within the modular network of islands and species in Wallacea and the West Indies. We test whether species traits - including habitat requirements, altitudinal range-span, feeding guild, trophic level, and body length - correlate with species roles. In both archipelagos, habitat requirements, altitudinal range-span and body length show strong relations to species roles. In particular, species that occupy coastal- and open habitats, as well as habitat generalists, show higher proportions of connectors and network hubs and thus tend to span several biogeographical modules (i.e. subregions). Likewise, large body size and a wide altitudinal range-span are related to a wide distribution on many islands and across several biogeographical modules. On the other hand, species restricted to interior forest are mainly characterized as peripherals and, thus, have narrow and localized distributions within biogeographical modules rather than across the archipelago-wide network. These results suggest that the ecological amplitude of a species is highly related to its geographical distribution within and across bio geographical subregions and furthermore supports the idea that large-scale species distributions relate to distributions at the local community level. We finally discuss how our biogeographical species roles may correspond to the stages of the taxon cycle and other prominent theories of species assembly. © 2013 The Authors.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
The objective of this work was to evaluate the agronomic traits and the popping expansion index of three Brazilian popcorn cultivars under different row spacings and plant populations. The trials were performed during two crop seasons, under field conditions. The experimental design used was a randomized complete block, in a split-split plot, with 27 treatments and four replicates. Treatments were represented in a triple factorial arrangement: three row spacings (0.40, 0.60, and 0.80 m), three plant populations (40,000, 60,000, and 80,000 plants per hectare), and three popcorn cultivars (IAC-TC 01, IAC 12, and Zelia). The increase in plant population causes a reduction in the number of grains per ear, lower prolificacy, and grain weight loss. Cultivar grain yield is affected by row spacing and popcorn plant population. Cultivar IAC 12 shows highest grain yield under row spacings of 0.40 and 0.60 m and plant population between 60,000 and 80,000 plants per hectare. The popping expansion index is not affected by row spacing or plant population.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Coordenação de Aperfei çoamento de Pessoal de Nível Superior (CAPES)
Resumo:
The aim of this study is to investigate the genetic control of growth traits in the initial phases of development in fragmented populations of Copaifera langsdorffii Desf., using microsatellite markers. For the effect two populations of C. langsdorffii were used: a municipal park located in Sao Jose do Rio Preto (SJRP) and at Assis Ecological Station (AES), both in the state of sao Paulo, Brazil. The model to estimate the heritability coefficient is the method of regression of a measure of phenotypic similarity and an estimate of kinship between paired individuals. The coefficients of relatedness and heritability were estimated for three classes of distance (10, 20 and 30 m) within populations. Estimates of heritability were low (maximum 0.15) for all traits, ranging from positive values for regenerating individuals of the population SJRP and from negative to positive for the juvenile population AES. In evolutionary terms, these results indicate little chance of changing the population mean of the characters studied by natural selection; with strong random environmental effects changing this average. The results also suggest that the heritability for height to decrease between regenerating to juvenile stage and the natural selection in natural populations is stronger in the early stages of plant development.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
We evaluated oil and powder formulations of Melia azedarach for controlling larvae of Diabrotica speciosa (Germar) in corn and plant enhancement. Five concentrations of each formulation were evaluated and compared to fipronil (negative control) and distilled water (positive control). After treatment, the number of surviving insects (larvae, pupae, and adults), the adult body weight, the sex ratio, and the longevity were recorded, while the height, dry weight of aerial part and roots, and number of leaves of plants were measured. The oil formulation at 4.0 mL reduced the larvae population of D. speciosa similarly to the insecticide fipronil, which resulted in greater height, dry weight of the root system, and number of leaves. Powder formulation at concentrations of 40, 80, and 160 mg caused larval mortality above 80%; however, these concentrations did not prevent reduction of plant height and dry weight of aerial part. Further studies assessing the residual period of M. azedarach control against D. speciosa larvae and its phytotoxicity, which are common traits associated with azadirachtin application, are necessary to subsidize the next steps of this alternative control strategy.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)