100 resultados para medial rotation
Resumo:
In this report, we present a case of myositis ossificans traumatica (MOT) of the medial pterygoid muscle that had developed after mandibular block anesthesia administered for endodontic treatment of the lower right second molar, demonstrating typical features of this condition. MOT should be considered as a differential diagnosis when there is severe limitation of jaw opening and an associated trauma. Panoramic radiographs and axial and coronal computed tomography (CT) scans can effectively delineate the calcified mass. Other imaging studies that may be helpful include magnetic resonance imaging (MRI), bone scans, and ultrasound. As shown in our case, calcified masses were found in the right mandibular angle, which severely limited jaw opening. Some earlier reported cases of MOT were treated by extraoral surgical approaches with complete removal of the evolving muscle. The aim of this case report is to present only the diagnostic imaging aspects of myositis ossificans traumatica.
Resumo:
In the last few years, crop rotation has gained attention due to its economic, environmental and social importance which explains why it can be highly beneficial for farmers. This paper presents a mathematical model for the Crop Rotation Problem (CRP) that was adapted from literature for this highly complex combinatorial problem. The CRP is devised to find a vegetable planting program that takes into account green fertilization restrictions, the set-aside period, planting restrictions for neighboring lots and for crop sequencing, demand constraints, while, at the same time, maximizing the profitability of the planted area. The main aim of this study is to develop a genetic algorithm and test it in a real context. The genetic algorithm involves a constructive heuristic to build the initial population and the operators of crossover, mutation, migration and elitism. The computational experiment was performed for a medium dimension real planting area with 16 lots, considering 29 crops of 10 different botanical families and a two-year planting rotation. Results showed that the algorithm determined feasible solutions in a reasonable computational time, thus proving its efficacy for dealing with this practical application.
Resumo:
We study the effect of shear and rotation on results previously obtained dealing with the application of the spherical collapse model (SCM) to generalized Chaplygin gas (gCg)-dominated universes. The system is composed of baryons and gCg and the collapse is studied for different values of the parameter α of the gCg. We show that the joint effect of shear and rotation is that of slowing down the collapse with respect to the simple SCM. This result is of utmost importance for the so-called unified dark matter models, since the described slowdown in the growth of density perturbations can solve one of the main problems of the quoted models, namely the instability described in previous papers [e.g., H. B. Sandvik, Phys. Rev. D 69, 123524 (2004)] at the linear perturbation level. © 2013 American Physical Society.
Resumo:
Soil acidity and low natural fertility are the main problems for grain production in Brazilian 'cerrado'. Although lime has been the most applied source for soil correction, silicate may be an alternative material due to its lower solubility and Si supply, which is beneficial to several crops. This work aimed to evaluate the efficiency of superficial liming and calcium/magnesium silicate application on soil chemical attributes, plant nutrition, yield components and final yield of a soybean/white oat/maize/bean rotation under no-tillage system in a dry-winter region. The experiment was conducted under no tillage system in a deep acid clayey Rhodic Hapludox, Botucatu-SP, Brazil. The design was the completely randomized block with sixteen replications. Treatments consisted of two sources for soil acidity correction (dolomitic lime: ECC=90%, CaO=36% and MgO=12%; calcium/magnesium silicate: ECC=80%, CaO=34%, MgO=10% and SiO2=22%) applied in October 2006 to raise base saturation up to 70% and a control, with no soil correction. Soybean and white oat were sown in 2006/2007 as the main crop and off-season, respectively. Maize and bean were cropped in the next year (2007/2008). Products from silicate dissociation reach deeper soil layers after 18months from the application, compared to liming. Additionally, silicate is more efficient than lime to increasing phosphorus availability and reducing toxic aluminum. Such benefits in soil chemical attributes were only evidenced during bean cropping, when grain yield was higher after silicate application comparatively to liming. Both correction sources were improved mineral nutrition of all the other crops, mainly Ca and Mg levels and agronomical characteristics, reflecting in higher yield. © 2012 Elsevier B.V.
Resumo:
Nutrient use efficiency has become an important issue in agriculture, and crop rotations with deep vigorous rooted cover crops under no till may be an important tool in increasing nutrient conservation in agricultural systems. Ruzigrass (Brachiaria ruziziensis) has a vigorous, deep root system and may be effective in cycling P and K. The balance of P and K in cropping systems with crop rotations using ruzigrass, pearl millet (Pennisetum glaucum) and ruzigrass + castor bean (Ricinus communis), chiseled or not, was calculated down to 0.60 m in the soil profile for 2 years. The cash crops were corn in the first year and soybean in the second year. Crop rotations under no-till increased available P amounts in the soil-plant system from 80 to 100 %, and reduced K losses between 4 and 23 %. The benefits in nutrient balance promoted by crop rotations were higher in the second year and under without chiseling. Plant residues deposited on the soil surface in no-till systems contain considerable nutrient reserve and increase fertilizer use efficiency. However, P release from ruzigrass grown as a sole crop is not synchronized with soybean uptake rate, which may result in decreased yields. © 2013 Springer Science+Business Media Dordrecht.
Resumo:
Spermiogenesis and sperm ultrastructure from 21 species of Moenkhausia and others related genera are described. To evaluate the phylogenetic signals, 18 unordered characters were utilized in implied weighting analysis through the program TNT 1.1. Four variations of spermiogenesis were found. In the earliest spermatids, the nucleus can be positioned lateral, eccentric, strongly eccentric or nearly medial in relation to the distal centriole. The nuclear rotation can be present or absent. These spermiogenesis processes are related or intermediate to Type I and Type III. Taking into account the degrees of nuclear rotation during the spermiogenesis and other characteristics, distinct forms of spermatozoa are observed among the species analyzed. The phylogenetic analysis yielded a single most parsimonious tree with fit value 2.70000 and the topology obtained founds Moenkhausia as non-monophyletic. However, some hypothesis of relationships previously proposed viz the clade 20, which contains the type species Moenkhausia xinguensis, is recovered herein. This clade is supported by five synapomorphies, and it allows the supposition that these species constitute a monophyletic group. The whole topology is presented and discussed. © 2012 The Authors. Acta Zoologica © 2012 The Royal Swedish Academy of Sciences.
Resumo:
This paper presents a numerical approach to model the complex failure mechanisms that define the ultimate rotational capacity of reinforced concrete beams. The behavior in tension and compression is described by a constitutive damage model derived from a combination of two specific damage models [1]. The nonlinear behavior of the compressed region is treated by the compressive damage model based on the Drucker-Prager criterion written in terms of the effective stresses. The tensile damage model employs a failure criterion based on the strain energy associated with the positive part the effective stress tensor. This model is used to describe the behavior of very thin bands of strain localization, which are embedded in finite elements to represent multiple cracks that occur in the tensioned region [2]. The softening law establishes dissipation energy compatible with the fracture energy of the concrete. The reinforcing steel bars are modeled by truss elements with elastic-perfect plastic behavior. It is shown that the resulting approach is able to predict the different stages of the collapse mechanism of beams with distinct sizes and reinforcement ratios. The tensile damage model and the finite element embedded crack approach are able to describe the stiffness reduction due to concrete cracking in the tensile zone. The truss elements are able to reproduce the effects of steel yielding and, finally, the compressive damage model is able to describe the non-linear behavior of the compressive zone until the complete collapse of the beam due to crushing of concrete. The proposed approach is able to predict well the plastic rotation capacity of tested beams [3], including size-scale effects.
Resumo:
We numerically investigate the dynamics of rotation of several close-in terrestrial exoplanet candidates. In our model, the rotation of the planet is disturbed by the torque of the central star due to the asymmetric equilibrium figure of the planet. We model the shape of the planet by a Jeans spheroid. We use surfaces of section and spectral analysis to explore numerically the rotation phase space of the systems adopting different sets of parameters and initial conditions close to the main spin-orbit resonant states. One of the parameters, the orbital eccentricity, is critically discussed here within the domain of validity of orbital circularization timescales given by tidal models. We show that, depending on some parameters of the system like the radius and mass of the planet, eccentricity etc., the rotation can be strongly perturbed and a chaotic layer around the synchronous state may occupy a significant region of the phase space. 55 Cnc e is an example. © 2013 Springer Science+Business Media Dordrecht.
Resumo:
This study focused on three-dimensional (3D) airway space changes and stability following simultaneous maxillomandibular counterclockwise rotation, mandibular advancement, and temporomandibular joint (TMJ) reconstruction with custom-made total joint prostheses (TMJ Concepts®). Cone beam computed tomography (CBCT) scans of 30 consecutive female patients with irreversibly compromised TMJs were obtained at the following intervals: T1, presurgery; T2, immediately after surgery; and T3, at least 6 months after surgery. The CBCT volumetric datasets were analysed with Dolphin Imaging ® software to evaluate surgical and postsurgical changes to oropharyngeal airway parameters. The average changes in airway surface area (SA), volume (VOL), and minimum axial area (MAA) were, 179.50 mm2, 6302.60 mm3, and 92.23 mm2, respectively, at the longest follow-up (T3 - T1) (P ≤ 0.001). Significant correlations between the amount of mandibular advancement and counterclockwise rotation of the occlusal plane and 3D airway changes were also found (P ≤ 0.01). The results of this investigation showed a significant immediate 3D airway space increase after maxillomandibular counterclockwise rotation and mandibular advancement with TMJ Concepts total joint prostheses, which remained stable over the follow-up period. © 2013 International Association of Oral and Maxillofacial Surgeons.
Resumo:
The orbit is an irregular conical cavity formed from 7 bones including the frontal, sphenoid, zygomatic, maxillary, ethmoid, lacrimal, and palatine bones. Fractures of the internal orbit can cause a number of problems, including diplopia, ocular muscle entrapment, and enophthalmos. Although muscle entrapment is relatively rare, diplopia and enophthalmos are relatively common sequelae of internal orbital fractures. Medial orbital wall fracture is relatively uncommon and represents a challenge for its anatomical reconstruction. In this context, autogenous bone graft has been the criterion standard to provide framework for facial skeleton and orbital walls. Therefore, it is possible to harvest grafts of varying size and contour, and the operation is performed through the bicoronal incision, which is the usual approach to major orbital reconstruction. Thus, this article aimed to describe a patient with a pure medial orbital wall fracture, and it was causing diplopia and enophthalmos. The orbital fracture was treated using autogenous bone graft from calvarial bone. The authors show a follow-up of 12 months, with facial symmetry and without diplopia and enophthalmos. In addition, a computed tomography scan shows excellent bone healing at the anterior and posterior parts of the medial orbital wall reconstruction. Copyright © 2013 by Mutaz B. Habal, MD.
Resumo:
Growing cover crops in systems under no tillage affects different pools of soil organic matter, and eventually soil physical attributes are modified. The objective of this study was to evaluate changes in soil organic matter and their relationship with soil physical attributes as affected by plant species grown in rotation with soybean [Glycine max (L.) Merr.] under no-till for 3 yr. Crop rotations included grain sorghum [Sorghum bicolor (L.) Moench], ruzigrass [Urochloa ruziziensis (R. Germ, and CM. Evard) Crins] and sorghum mixed with ruzigrass, all grown in fall/winter, followed by pearl millet [Pennisetum americanum (L.) Leeke], sunn hemp (Crotalaria juncea L.) and sorghum-sudangrass [S. bicolor × S. sudanense (Piper) Stapf] grown during the spring, plus a fallow check plot. Soybean was grown as the summer crop. Millet and sorghum-sudangrass cropped in spring showed higher root and shoot production as spring cropping. In fall/winter, sorghum mixed with ruzigrass yielded higher phytomass compared with sole cropping. Soil physical attributes and organic matter fractioning were positively affected by cropping millet and sorghum-sudangrass whereas intermediate effects were observed after sunn hemp. Maintaining fallow in spring had negative effects on soil organic matter and physical properties. Ruzigrass and sorghum mixed with ruzigrass cropped in fall/winter resulted in better soil quality. Spring cover crops were more efficient in changing soil bulk density, porosity, and aggregates down to 0 to 10 cm; on the other hand, fall/winter cropping showed significant effects on bulk density in the uppermost soil layer. Total C levels in soil were increased after a 3-yr rotation period due to poor initial physical conditions. Fractions of particulate organic C, microbial C, and C in macroaggregates were the most affected by crop rotations, and showed high relation with improved soil physical attributes (porosity, density, and aggregates larger than 2 mm). © Soil Science Society of America, All rights reserved.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)