115 resultados para landfill gas emission measurements
Resumo:
Films were grown in hexamethyldisiloxane (HMDS)-argon mixtures in a diode sputtering system with a gold cathode. Quantitative optical emission spectroscopy (OES)-actinometry revealed that the electron density or mean electron energy (or both) increased with increasing Ar concentrations in the gas feed. Increasing concentrations of Ar produced greater sputtering of the cathode and hence greater plasma A u concentrations. Fragmentation of the HMDS molecule resulted in species such as CH, Fl, and Si which were detected by OES. Film deposition rate, as determined by optical interferometry, was found to be increased by the inclusion of Ar in the gas feed. Transmission electron microscopy revealed particles, probably of Au, embedded in the polymer films. Actinometric measurements of Au in the discharge and electron probe microscopy of the deposited material showed that film Au concentrations increase with increasing concentrations of Au in the plasma. A relatively low fragmentation of HMDS molecules in the de plasma was revealed by the very small Si-HIR absorption band which is usually prominent in spectra of plasma polymerized HMDS films.
Resumo:
Field emission properties of hot filament chemical vapor deposited boron doped polycrystalline diamond have been studied. Doping level (N-B) of different samples has been varied by the B/C concentration in the gas feed during the growth process and doping saturation has been observed for high B/C ratios. Threshold field (E-th) for electron emission as function of B/C concentration has been measured, and the influences of grain boundaries, doping level and surface morphology on field emission properties have been investigated. Carrier transport through conductive grains and local emission properties of surface sites have been figured out to be two independent limiting effects in respect of field emission. Emitter current densities of 500 nA cm(-2) were obtained using electric fields less than 8 V/mu m. (c) 2007 Elsevier B.V. All rights reserved.
Resumo:
The feasibility of Portland cement analysis by introduction of slurries in an inductively coupled plasma optical emission spectrometer (ICP-OES) with axial viewing has been evaluated. After a fast manual grinding of the cement samples, owing to the pulverized state of this material, 0.1% m/v slurries were prepared in 1% v/v HCl. The calibration was performed adopting two strategies: one based on slurries prepared from different masses (50, 75, 100 and 125 mg) of a Portland cement standard reference material (NIST SRM 1881), and the other one based on aqueous reference solutions. A complete analysis of cement for major (Al, Ca, Fe, Mg and Si), minor and trace elements (Mn, P, S, Sr and Ti) was accomplished. Both strategies led to accurate results for commercial Portland cement samples, except for Si and Ti. for which the calibration with aqueous reference solutions resulted in low values. Applying a paired t-test it was shown that most results were in agreement at a 95% confidence level with a conventional fusion decomposition procedure. The ICP-OES with axial viewing and end-on gas configuration for removal of the recombination plasma zone was effective for cement slurry analysis without any undesirable particle deposition in the pre-optics interface and without severe spectral interferences. (C) 2002 Elsevier B.V. B.V. All rights reserved.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The fabrication of nanoporous sputtered CaCu3Ti4O12 thin films with high gas sensitivity is reported in this work. The porous microstructure and the nanocrystalline nature of the material promoted the diffusion of the atmosphere into the film, shortening the response time of the samples. Behaving as p-type semiconductor, the material presents enhanced sensitivity even at low working temperatures. Impedance spectroscopy measurements were performed in order to investigate the mechanisms responsible for the performance of the devices. (C) 2008 American Institute of Physics.
Resumo:
Complex cluster [TiO5 center dot V-O(z)] and [SrO11 center dot V-O(z)] (where V-O(z)=V-O(X), V-O(center dot), V-O(center dot center dot)) vacancies were identified in disordered SrTiO3 powders prepared by the polymeric precursor method, based on experimental measurements by x-ray absorption near edge structure spectroscopy. The paramagnetic complex states of [TiO5 center dot V-O(center dot)] and [SrO11 center dot V-O(center dot)] with unpaired electrons were confirmed by electron paramagnetic resonance spectroscopy. The disordered powders showed strong photoluminescence at room temperature. Structural defects of disordered powders, in terms of band diagram, density of states, and electronic charges, were interpreted using high-level quantum mechanical calculations in the density functional framework. The four periodic models used here were consistent with the experimental data and explained the presence of photoluminescence. (C) 2008 American Institute of Physics.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
We show that a hadron gas model with continuous particle emission instead of freeze-out may solve some of the problems (high values of the freeze-out density and specific net charge) that one encounters in the latter case when studying strange particle ratios such as those from the experiment WA85. This underlines the necessity to understand better particle emission in hydrodynamics to be able to analyze data. It also reopens the possibility of a quark-hadron transition occurring with phase equilibrium instead of explosively.
Resumo:
The luminescence spectra and extended x-ray-absorption fine-structure (EXAFS) measurements of a series of Eu3+-based organic/inorganic xerogels were reported and related to the local coordination of the lanthanide cations. The hybrid matrix of these organically modified silicates, classed as U(2000) ureasils, is a siliceous network to which short organic chains containing oxyethylene units are covalently grafted by means of urea bridges. The luminescent centers were incorporated as europium triflate, Eu(CF3SO3)3, and europium bromide, EuBr3, with concentrations 200≥n≥20 and n=80, 40, and 30, respectively - where n is the number of ether oxygens in the polymer chains per Eu3+ cation. EXAFS measurements were carried out in some of the U(2000)nEu(CF3SO3)3 xerogels (n=200, 80, 60, and 40). The obtained coordination numbers N ranging from 12.8, n=200, to 9.7, n=40, whereas the average Eu3+ first neighbors distance R is 2.48-2.49 Å. The emission spectra of these multiwavelength phosphors superpose a broad green-blue band to a series of yellow-red narrow 5D0→7F0-4 Eu3+ lines and to the eye the hybrids appeared to be white, even at room temperature. The ability to tune the emission of the xerogels to colors across the chromaticity diagram is achieved by changing the excitation wavelength and the amount of salt incorporated in the hybrid host. The local environment of Eu3+ is described as a continuous distribution of closely similar low-symmetry network sites. The cations are coordinated by the carbonyl groups of the urea moieties, water molecules, and, for U(2000)nEu(CF3SO3)3, by the SO3 end groups of the triflate anions. No spectral evidences have been found for the coordination by the ether oxygens of the polyether chains. A mean radius for the first coordination shell of Eu3+ is calculated on the basis of the emission energy assignments. The results obtained for U(2000)nEu(CF3SO3)3, 2.4 Å for 90 ≥n≥40 and 2.6 and 2.5 Å for n=30 and 20, respectively, are in good agreement with the values calculated from EXAFS measurements. The energy of the intraconfigurational charge-transfer transitions, the redshift of the 5D0→7F0 line, with respect to the value calculated for gaseous Eu3+, and the hypersensitive ratio between the 5D0→7F2 and 5D0→7F1 transitions, point out a rather low covalency nature of the Eu3+ first coordination shell in these xerogels, comparing to the case of analogous polymer electrolytes modified by europium bromide. ©1999 The American Physical Society.
Resumo:
Most of the natural radiation dose to man comes from radon gas and its progeny. Several countries have established national institutions and national programs in charge of the study of radon and its connection with lung cancer risk and public health. In this paper an indoor radon measurements in Latin American countries is presented. The participants in this work were from Argentina, Brazil, Ecuador, Mexico, Peru and Venezuela. Many different techniques are used in this common effort, and the indoor radon levels in specific locations in each of the participant countries are presented.
Resumo:
Background. Intravenous injection of contrast material is routinely performed in order to differentiate nonaerated lung parenchyma from pleural effusion in critically ill patients undergoing thoracic computed tomography (CT). The aim of the present study was to evaluate the effects of contrast material on CT measurement of lung volumes in 14 patients with acute lung injury. Method. A spiral thoracic CT scan, consisting of contiguous axial sections of 10 mm thickness, was performed from the apex to the diaphragm at end-expiration both before and 30 s (group 1; n=7) or 15 min (group 2; n=7) after injection of 80 ml contrast material. Volumes of gas and tissue, and volumic distribution of CT attenuations were measured before and after injection using specially designed software (Lungview®; Institut National des Télécommunications, Evry, France). The maximal artifactual increase in lung tissue resulting from a hypothetical leakage within the lung of the 80 ml contrast material was calculated. Results. Injection of contrast material significantly increased the apparent volume of lung tissue by 83 ± 57 ml in group 1 and 102 ± 80 ml in group 2, whereas the corresponding maximal artifactual increases in lung tissue were 42 ± 52 ml and 31 ± 18 ml. Conclusion. Because systematic injection of contrast material increases the amount of extravascular lung water in patients with acute lung injury, it seems prudent to avoid this procedure in critically ill patients undergoing a thoracic CT scan and to reserve its use for specific indications.