390 resultados para hydrogen peroxide solution
Resumo:
The aim of this study is to demonstrate through a case report, a proposed treatment for discolored teeth, with and without pulp vitality, by the technique of external and internal tooth bleaching with hydrogen peroxide to 35% Lase Peroxide Sensy (DMC) using Whitening Lase II Device (DMC), and a silicone guide (3M ESPE) in the palatine portion of the upper teeth. In this clinical case, the patient had darkened dental elements 11 and 22, and dissatisfaction with the coloring of other elements. It was observed that the techniques used and the materials chosen allowed for an excellent aesthetic result, with technical simplicity and low cost, and minimal occurrence of signs and symptoms
Resumo:
The aim of this study was to compare the bleaching efficacy of 35% hydrogen peroxide and 15% hydrogen peroxide with nitrogen-doped titanium dioxide catalysed by an LED-laser hybrid light. We studied 70 patients randomized to two groups. Tooth shade and pulpal sensitivity were registered. Group 1: 15% hydrogen peroxide with nitrogen-doped titanium dioxide. Group 2: 35% hydrogen peroxide. Both groups were activated by an LED-laser light. No significant differences were seen in shade change immediately, one week or one month after treatment (p > 0.05). Differences were seen in pulpal sensitivity (p < 0.05). The use of an LED-laser hybrid light to activate 15% hydrogen peroxide gel with N_TiO2 permits decreasing the peroxide concentration with similar aesthetic results and less pulpal sensitivity than using 35% hydrogen peroxide for bleaching teeth.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Objectives: The aim of this study was to investigate the effect of hydrogen peroxide gels with different concentrations (20%, 25%, 30%, and 35%) on enamel Knoop microhardness (KNIT) as well as on changes in dental color (C).Methods: Cylindrical specimens of enamel/dentin (3-nun diameter and 2-nun thickness) were obtained from bovine incisors and randomly divided into six groups (n=20), according to the concentration of the whitening gel (20%, 25%, 30%, 35%, control, thickener). After polishing, initial values of KNH0 and color measurement, assessed by spectrophotometry using the CIE L*a*b* system, were taken from the enamel surface. The gels were applied on the enamel surface for 30 minutes, and immediate values of KNHi were taken. After seven days of being stored in artificial saliva, new measures of KNH7 and color (L-7* a(7)* b(7)*, for calculating Delta E, Delta L, and Delta b) were made. Data were submitted to statistical analysis of variance, followed by Tukey test (p<0.05).Results: Differences in gel concentration and time did not influence the microhardness (p=0.54 and p=0.29, respectively). In relation to color changes, Delta E data showed that the 35% gel presented a higher color alteration than the 20% gel did (p=0.006).Conclusion: Bleaching with 35% hydrogen peroxide gel was more effective than with the 20% gel, without promoting significant adverse effects on enamel surface microhardness.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The aim of this clinical randomized double-blind split-mouth study was to assess the effectiveness of a 6% hydrogen peroxide with nitrogen-doped titanium dioxide light activated bleaching agent. 31 patients were treated with: one upper hemiarcade with a 35% hydrogen peroxide bleaching agent and the other hemiarcade with a 6% hydrogen peroxide. Two applications were completed each treatment session and three sessions were appointed, with one week interval between them. Tooth colour was registered each session and 1 week and 1 months after completing the treatment by spectrophotometer, registering parameters L*, a* and b*, and subjectively using VITA Classic guide. Tooth sensitivity was registered by VAS and patient satisfaction and self-perception result was determined using OHIP-14. Tooth colour variation and sensitivity were compared between both bleaching agents. Both treatment showed a change between baseline colour and all check-points with a ΔE=5.57 for 6% and of ΔE=7.98 for the 35% one month after completing the (p<0.05). No statistical differences were seen when subjective evaluations were compared. Also, no differences were seen in tooth sensitivity between bleaching agents. OHIP-14 questionnaire demonstrated a significant change for all patients after bleaching. A 6% hydrogen peroxide with nitrogen-doped titanium dioxide light activated agent is effective for tooth bleaching, reaching a ΔE of 5.57 one month after completing the treatment, with no clinical differences to a 35% agent neither in colour change or in tooth sensitivity. A low concentration hydrogen peroxide bleaching agent may reach good clinical results with less adverse effects.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Context: The possibility of bleaching vital teeth with peroxide-based products considerably revolutionized esthetic dentistry. Aim: The aim of this clinical study was to evaluate tooth color change and dental sensitivity after exposure to preloaded film containing a 10% hydrogen peroxide whitening system (Opalescence Trθswhite Supreme). Materials and Methods: A total of 13 volunteers, aged 18 to 25 years, participated in this study. The patients used the whitening system once a day for 60 minutes during the 8-day study. For maxillary incisors and canines, the color change was visually evaluated with the Vita color scale before, immediately, and six months after the treatment. Tooth sensitivity was evaluated during the daily gel applications. All whitening applications were done in office and under the supervision of a dental professional. Statistical Analysis Used: The results were analyzed using the Friedman Test (nonparametric repeated measures ANOVA) at a level of 5%, and Dunn's Multiple Comparison Test at the level of 5%. Results: It was verified that the original mean color values observed at the baseline analysis differed significantly from those observed immediately after bleaching, as well as from those seen in the analysis at six months ( P = 0.001). There was no significant difference between the mean color values observed in the immediate time and in the analysis at six months ( P = 0.474). No tooth sensitivity was observed in any patients. Conclusion: It was concluded that the bleaching technique using the 10% hydrogen peroxide system was effective in a short period of time without tooth sensitivity during applications.
Resumo:
Starch is one of the most important sources of reserve of carbohydrate in plants and the main source in the human diet due to its abundance in the nature. There no other food ingredient that can be compared with starch in terms of sheer versatility of application in the food industry. Unprocessed native starches are structurally too weak and functionally too restricted for application in today’s advanced food and industrial technologies. The main objective of this study was to compare the thermal behavior of native cassava starch and those treated with hydrogen peroxide, as well as those treated with hydrogen peroxide and ferrous sulfate. The cassava starch was extracted from cassava roots (Manihot esculenta, Crantz) and treated by standardized hydrogen peroxide (H2 O2 ) solutions at 1, 2 and 3% (with or without FeSO4 ). Investigated by using they are thermoanalytical techniques: thermogravimetry - TG, differential thermal analysis – DTA and differential scanning calorimetry - DSC, as well as optical microscopy and X-ray powder diffractometry. The results showed the steps of thermal decomposition, changes in temperatures and in gelatinization enthalpy and small changes in crystallinity of the granules.
Can hydrogen peroxide and quercetin improve production of Eucalyptus grandis x Eucalyptus urophylla?
Resumo:
Vegetative propagation is considered the best choice for the rapid multiplication of plant species, however, rooting may still present difficulties. Substances, such as auxins, phenolic compounds and hydrogen peroxide, are recognized as able to improve this process. The aim of the present work was to determine if hydrogen peroxide in combination with quercetin or indole butyric acid, can modify some characteristics related to rooting and development in cuttings of Eucalyptus grandis x Eucalyptus urophylla. Cuttings were periodically evaluated at 30, 60 and 90 days according to the following criteria: height, diameter and survival percentage. After planting (90 days), a destructive evaluation was performed to determine rooting percentage, average size and number of roots. Polyamines content and polyamine oxidase activity, as biochemical markers of plant development, were determined. No statistically significant differences in height, diameter, survival and rooting percentage, root length and number of roots per cuttings were found. Treatments induced a decrease in putrescine levels and polyamine oxidase activity in roots. For absence of positive responses, the use of these substances as a treatment to improve cutting production is economically unviable.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
A nephelometric technique based on a liquid drop is described for the measurement of atmospheric sulfur dioxide. A 40-mul drop of barium chloride and hydrogen peroxide solution is suspended in a flowing-air sampling stream. The sulfur (IV) collected is oxidized to sulfur (VI) and finally precipitated as barium sulfate. Nephelometric detection of drop is achieved by an appropriate arrangement consisting of an optical fiber contacting the drop and a photodiode placed at 90degrees relative to the fiber. The design and characteristics of this drop-based gas sensor system are described. The analytical response, as photocurrent, is proportional to the product of the sampling period and the sulfur dioxide concentration. The detection limit is ca. 1.1 mg m(-3) for a 10-min sampling time. The present technique is fairly rapid and simple, uses a small amount of reagent and is set up with low-cost equipment, making this system economically viable. (C) 2002 Elsevier B.V. B.V. All rights reserved.
Resumo:
Pós-graduação em Agronomia (Energia na Agricultura) - FCA
Resumo:
Purpose: To quantify the amount of peroxide penetration from the pulp chamber to the external surface of teeth during the walking bleaching technique. Methods: Seventy-two bovine lateral incisors were randomly divided over five experimental groups and one control (n = 12 per group): (1) 35% hydrogen peroxide (HP); (2) 35% carbamide peroxide (CP); (3) sodium perborate (SP); (4) (HP+SP); (5) (CP+SP) and (6) Control (CG), deionized water. All groups were treated according to the walking bleach technique. After 7 days at 37 degrees C in an acetate buffer solution, 100 mu l violet leukocrystal coloring and 50 mu l peroxidase was added, producing a blue stain that could be measured in a spectrophotometer and then converted into peroxide mu g/ml. Results: G5 exhibited the greatest penetration, while G2 and G3 produced the lowest values. All bleaching agents penetrated from the pulp chamber to the external root surface. There was a direct correlation between the presence of oxidative agents and penetration potential. Sodium perborate in distilled water was less oxidative and appeared to be the least aggressive bleaching agent. (Am J Dent 2010;23:171-174).