110 resultados para histone deacetylase 9 gene


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Matrix metalloprotease-13 (MMP-13) or collagenase-3 is involved in a number of pathologic processes such as tumor metastasis and angiogenesis, osteoarthritis, rheumatoid arthritis and periodontal diseases. These conditions are associated with extensive degradation of both connective tissue and bone. This report examines gene regulation mechanisms and signal transduction pathways involved in Mmp-13 expression induced by proinflammatory cytokines in periodontal ligament (PDL) fibroblasts. Mmp-13 mRNA expression was increased 10.7 and 9.5 fold after stimulation with IL-1 beta (5 ng/mL) and TNF-alpha (10 ng/mL), respectively. However, inhibition of p38 MAPKinase with SB203580 resulted in significant (p < 0.001) induction (23.2 and 18.1 fold, respectively) of Mmp-13 mRNA as assessed by real time PCR. Negative regulation of IL-1 induced Mmp-13 expression was confirmed by inhibiting p38 MAPK gene expression with siRNA. Transient transfection of dominant negative forms of MKK3 and MKK6 also resulted in increased levels of Mmp-13 mRNA after IL-1 beta stimulation. Mmp-13 mRNA expression induced by TNF-alpha was decreased by JNK and ERK inhibition. Western blot and zymogram analysis indicated that Mmp-13 protein expression induced by the proinflammatory cytokines were also upregulated by inhibition of p38 MAPK. Reporter gene experiments using stable cell lines harboring 660-bp sequence of the murine Mmp-13 proximal promoter indicated that transcriptional mechanisms were at least partially involved in this negative regulation of Mmp-13 expression by p38 MAPK and upstream MKK3/6. These results suggest a negative transcriptional regulatory mechanism mediated by p38 MAPK and upstream MKK3/6 on Mmp-13 expression induced by proinflammatory cytokines in PDL fibroblasts. (c) 2005 Elsevier B.V./International Society of Matrix Biology. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Invasive behavior is the pathological hallmark of malignant gliomas, being responsible for the failure of surgery, radiation, and chemotherapy. Matrix metalloproteinases (MMPs) are essential for proper ECM remodeling and invasion. The tumor and metastasis suppressor RECK protein regulates at least three members of the MMPs family: MMP-2, MMP-9, and MT1-MMP. In order to mimic the in vivo invasion process, A172 and T98G, respectively, non-invasive and invasive human glioblastoma cell lines, were cultured onto uncoated (control) or type I collagen gel-coated surface, and maintained for up to 7 days to allow establishment of the invasive process. We show that the collagen substrate causes decreased growth rates and morphological alterations correlated with the invasive phenotype. Electronic transmission microscopy of T98G cells revealed membrane invaginations resembling podosomes, which are typically found in cells in the process of crossing tissue boundaries, since they constitute sites of ECM degradation. Real time PCR revealed higher RECK mRNA expression in A172 cells, when compared to T98G cells and, also, in samples obtained from cultures where the invasive process was fully established. Interestingly, the collagen substrate increases RECK expression in A172 cells and the same tendency is displayed by T98G cells. MMPs-2 and -9 displayed higher levels of expression and activity in T98G cells, and their activities are also upregulated by collagen. Therefore, we suggest that: (1) RECK down regulation is critical for the invasiveness process displayed by T98G cells; (2) type 1 collagen could be employed to modulate RECK expression in glioblastoma cell lines. Since a positive correlation between RECK expression and patients survival has been noted in several types of tumors, our results may contribute to elucidate the complex mechanisms of malignant gliomas invasiveness.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background and Objectives. Thrombin activatable fibrinolysis inhibitor (TAFI) plays an important role in hemostasis, functioning as a potent fibrinolysis inhibitor. TAFI gene variations may contribute to plasma TAFI levels and thrombotic risk.Design and Methods. We sequenced a 2083-bp region of the 5 ' -regulatory region of the TAFI gene in 127 healthy subjects searching for variations, and correlated identified polymorphisms with plasma TAFI levels. TAFI polymorphisms were examined as risk factors for venous thrombosis by determining their prevalence in 388 patients with deep venous thrombosis (DVT) and in 388 controls.Results. Seven novel polymorphisms were identified: -152 A/G, -438 A/G, -530 C/T, -1053 T/C, -1102 T/G, -1690 G/A, and -1925 T/C. -152 A/G, -530 C/T and -1925 T/C were found to be in strong linkage disequilibrium, as were the -438 A/G, -1053 T/C, -1102 T/G and -1690 G/A, Plasma TAFI levels were higher in -43866/-1053CC/-1102GG/-1690AA homozygotes than In -438AG/-1053TC/-1102TG/-1690GA heterozygotes, and -438AA/-1053TT/-1102TT/-1690GG homozygotes had the lowest TAFI levels (p=0.0003). TAFI concentrations in -152AA/-530CC/-1925TT homozygotes were somewhat higher but not significantly different from levels observed for -152AG/-530CT/-1925TC heterozygotes, Taken in combination, -438AG/-1053TC/-1102TG/-1690GA and -438AA/-1053TT/-1102TT/-1690GG yielded an OR for DVT of 0.8 (95%CI: 0.6-1). in subjects aged < 35 years the OR was 0.7 (95%CI: 0.5-1.1), the OR for -152AG/-530CT/-1925TC was 1 (95%CI: 0.5-2.2) in the whole group of patients and controls, whereas in subjects aged <35 years the OR was 0.1 (95%CI: 0.02-0.9).Interpretation and Conclusions. Polymorphisms in the TAFI promoter determine plasma antigen levels and may influence the risk of venous thrombophilia. <(c)>2001, Ferrata Storti Foundation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Hereditary hemochromatosis is a disorder of iron metabolism characterized by increased iron intake and progressive storage and is related to mutations in the HFE gene. Interactions between thalassemia and hemochromatosis may further increase iron overload. The ethnic background of the Brazilian population is heterogeneous and studies analyzing the simultaneous presence of HFE and thalassemia-related mutations have not been carried out. The aim of this study was to evaluate the prevalence of the H63D, S65C and C282Y mutations in the HFE gene among 102 individuals with alpha-thalassemia and 168 beta-thalassemia heterozygotes and to compare them with 173 control individuals without hemoglobinopathies. The allelic frequencies found in these three groups were 0.98, 2.38, and 0.29% for the C282Y mutation, 13.72, 13.70, and 9.54% for the H63D mutation, and 0, 0.60, and 0.87% for the S65C mutation, respectively. The chi-square test for multiple independent individuals indicated a significant difference among groups for the C282Y mutation, which was shown to be significant between the beta-thalassemia heterozygote and the control group by the Fisher exact test (P value = 0.009). The higher frequency of inheritance of the C282Y mutation in the HFE gene among beta-thalassemic patients may contribute to worsen the clinical picture of these individuals. In view of the characteristics of the Brazilian population, the present results emphasize the need to screen for HFE mutations in beta-thalassemia carriers.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Introduction: Venous thrombosis (VT) and inflammation are two closely related entities. In the present investigation we assessed whether there is a relation between genetic modifiers of the inflammatory response and the risk of VT. Materials and methods: 420 consecutive and unrelated patients with an objective diagnosis of deep VT and 420 matched controls were investigated. The frequencies of the following gene polymorphisms were determined in all subjects: TNF-α- 308 G/A, LT-α+ 252 A/G, IL-6-174 G/C, IL1-ra 86 bp VNTR, IL-10-1082 A/G and CD-31 125 C/G. Results: Overall odds ratio (OR) for VT related to TNF-α- 308 G/A, LT-α+ 252 A/G, IL-6-174 G/C, A1 allele (4 bp repeat) of the IL1-ra 86 bp VNTR, IL-10-1082 A/G and CD-31 125 C/G were respectively: 1.0 (CI95: 0.8-1.5), 1.3 (CI95: 1.0-1.7), 1.1 (CI95: 0.9-1.5), 1.6 (CI95: 1-2.5), 1.2 (CI95: 0.8-1.7) and 0.8 (CI95: 0.6-1.1). A possible interaction between polymorphisms was observed only for the co-inheritance of the mutant alleles of the LT-α+ 252 A/G and IL-10-1082 G/A polymorphisms (OR = 2; CI95: 1.1-3.8). The risk of VT conferred by factor V Leiden and FII G20210A was not substantially altered by co-inheritance with any of the cytokine gene polymorphisms. Conclusions: Cytokine gene polymorphisms here investigated did not significantly influence venous thrombotic risk. © 2006 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

DNA biosensors have gained increased attention over traditional diagnostic methods due to their fast and responsive operation and cost-effective design. The specificity of DNA biosensors relies on single-stranded oligonucleotide probes immobilized to a transduction platform. Here, we report the development of biosensors to detect the hippuricase gene (hipO) from Campylobacter jejuni using direct covalent coupling of thiol- and biotin-labeled single-stranded DNA (ssDNA) on both surface plasmon resonance (SPR) and diffraction optics technology (DOT, dotLab) transduction platforms. This is the first known report of the dotLab to detect targeted DNA. Application of 6-mercapto-1-hexanol as a spacer thiol for SPR gold surface created a self-assembled monolayer that removed unbound ssDNA and minimized non-specific detection. The detection limit of SPR sensors was shown to be 2.5 nM DNA while dotLab sensors demonstrated a slightly decreased detection limit of 5.0 nM (0.005 μM). It was possible to reuse the SPR sensor due to the negligible changes in sensor sensitivity (∼9.7 × 10 -7 ΔRU) and minimal damage to immobilized probes following use, whereas dotLab sensors could not be reused. Results indicated feasibility of optical biosensors for rapid and sensitive detection of the hipO gene of Campylobacter jejuni using specific ssDNA as a probe. © 2011 Elsevier B.V.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Objective: The role of epigenetic regulation in inflammatory diseases such as periodontitis is poorly known. The aim of this study was to assess whether Porphyromonas gingivalis lipopolysaccharide (LPS) can modulate gene expression levels of the some enzymes that promote epigenetic events in cultures of the human keratinocytes and gingival fibroblasts. In addition, the same enzymes were evaluated in gingival samples from healthy and periodontitis-affected individuals. Materials and methods: Primary gingival fibroblast and keratinocyte (HaCaT) cultures were treated with medium containing P. gingivalis LPS or P. gingivalis LPS vehicle for 24 h. After this period, cell viability was assessed by MTT test and total RNA extracted to evaluate gene expression levels of the following enzymes by qRT-PCR: DNA methyltransferase 1 (DNMT1), DNA methyltransferase 3a (DNMT3a), histone demethylases Jumonji domain containing 3 (JMJD3) and ubiquitously transcribed tetratricopeptide repeat, X chromosome (UTX). To evaluate gene expression in healthy and periodontitis-affected individuals, total RNA was extracted from biopsies of gingival tissue from healthy and periodontitis sites, and gene expression of DNMT1, DNAMT3a, JMJD3, and UTX was evaluated by qRT-PCR. Results: No significant differences were found in the gene expression analysis between healthy and periodontitis-affected gingival samples. The results showed that LPS downregulated DNMT1 (p < 0. 05), DNMT3a (p < 0. 05), and JMJD3 (p < 0. 01) gene expression in HaCaT cells, but no modulation was observed in gingival fibroblasts. Conclusion: P. gingivalis LPS exposure to human HaCaT keratinocytes downregulates gene expression of the enzymes that promote epigenetic events. Clinical relevance: The advance knowledge about epigenetic modifications caused by periodontopathogens may to possibly led to the development of new periodontal therapies. © 2012 Springer-Verlag.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A physical chromosome mapping of the H1 histone and 5S and 18S ribosomal RNA (rRNA) genes was performed in interspecific hybrids of Pseudoplatystoma corruscans and P. reticulatum. The results showed that 5S rRNA clusters were located in the terminal region of 2 chromosomes. H1 histone and 18S ribosomal genes were co-localized in the terminal portion of 2 chromosomes (distinct from the chromosomes bearing 5S clusters). These results represent the first report of association between H1 histone and 18S genes in fish genomes. The chromosome clustering of ribosomal and histone genes was already reported for different organisms and suggests a possible selective pressure for the maintenance of this association. © 2012 S. Karger AG, Basel.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Supernumerary chromosomes (B chromosomes) occur in approximately 15% of eukaryote species. Although these chromosomes have been extensively studied, knowledge concerning their specific molecular composition is lacking in most cases. The accumulation of repetitive DNAs is one remarkable characteristic of B chromosomes, and the occurrence of distinct types of multigene families, satellite DNAs and some transposable elements have been reported. Here, we describe the organization of repetitive DNAs in the A complement and B chromosome system in the grasshopper species Abracris flavolineata using classical cytogenetic techniques and FISH analysis using probes for five multigene families, telomeric repeats and repetitive C0t-1 DNA fractions. The 18S rRNA and H3 histone multigene families are highly variable and well distributed in A. flavolineata chromosomes, which contrasts with the conservation of U snRNA genes and less variable distribution of 5S rDNA sequences. The H3 histone gene was an extensively distributed with clusters occurring in all chromosomes. Repetitive DNAs were concentrated in C-positive regions, including the pericentromeric region and small chromosomal arms, with some occurrence in C-negative regions, but abundance was low in the B chromosome. Finally, the first demonstration of the U2 snRNA gene in B chromosomes in A. flavolineata may shed light on its possible origin. These results provide new information regarding chromosomal variability for repetitive DNAs in grasshoppers and the specific molecular composition of B chromosomes. © 2013 Bueno et al.