84 resultados para finite element modeling


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The surgical treatment of mandibular condyle fractures currently offers several possibilities for stable internal fixation. In this study, a finite element model evaluation was performed of three different methods for osteosynthesis of low subcondylar fractures: (1) two four-hole straight plates, (2) one seven-hole lambda plate, and (3) one four-hole trapezoidal plate. The finite element model evaluation considered a load applied to the first molar on the contralateral side to the fracture. Results showed that, although the three methods are capable of withstanding functional loading, the lambda plate displayed a more homogeneous stress distribution for both osteosynthesis material and bone and may be a better method when single-plate fixation is the option.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper is concerned with what a source precisely sees when it drives a receiver such as a continuous structural object. An equivalent lumped element system consisting of masses, springs and dampers is developed to visually represent the operational structural dynamics of a single-input structure at the driving point. The development is solely based on the mobility model of the driving point response. The mobility model is mathematically inverted to give the impedance model that is suitable for lumped element modeling. The two types of structures studied are unconstrained inertial objects and constrained resilient objects. The lumped element systems presented suggest a new view to dynamics that a single-input flexible structure in operation can be decomposed into the two subsystems: a base system of single degree of freedom (or of a mass for an inertial object) whose mass is in contact with the source and an appendage system consisting of a series of oscillators each of which is attached to the base mass. The driving point response is a result of the coupling between the two subsystems. (C) 2014 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Purpose: To evaluate the survival rate, success rate, load to fracture, and finite element analysis (FEA) of maxillary central incisors and canines restored using ceramic veneers and varying preparation designs.Methods and Materials: Thirty human maxillary central incisors and 30 canines were allocated to the following four groups (n=15) based on the preparation design and type of tooth: Gr1 = central incisor with a conservative preparation; Gr2 = central incisor with a conventional preparation with palatal chamfer; Gr3 = canine with a conservative preparation; Gr4 = canine with a conventional preparation with palatal chamfer. Ceramic veneers (lithium disilicate) were fabricated and adhesively cemented (Variolink Veneer). The specimens were subjected to 4 x 106 mechanical cycles and evaluated at every 500,000 cycles to detect failures. Specimens that survived were subjected to a load to fracture test. Bidimensional models were modeled (Rhinoceros 4.0) and evaluated (MSC.Patrans 2005r2 and MSC.Marc 2005r2) on the basis of their maximum principal stress (MPS) values. Survival rate values were analyzed using the Kaplan-Meier test (alpha = 0.05) and load to fracture values were analyzed using the Student t-test (alpha = 0.05).Results: All groups showed 100% survival rates. The Student t-test did not show any difference between the groups for load to fracture. FEA showed higher MPS values in the specimens restored using veneers with conventional preparation design with palatal chamfer.Conclusion: Preparation design did not affect the fracture load of canines and central incisors, but the veneers with conventional preparation design with palatal chamfer exhibited a tendency to generate higher MPS values.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The paper describes the preliminary studies of University of Minho on the use of Electric Impedance/Resistance Tomography to assess masonry structures. The study is focused on the analysis of values of current and voltage resulting from the use of an electrical source with voltage and frequency values from a distribution network. The analysis is made from results obtained through computer simulations, using a three-dimensional model of the idealized masonry structures. A finite element program was used for the simulations. Three types of electrodes were used in simulations, and the analysis of the results led to significant conclusions. Later masonry specimens were built and a series of preliminary tests were carried out in the laboratory. The comparative analysis of simulated and experimental results allowed identifying the factors that have influence on the physical results.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The aim of this study was to use the finite element method to evaluate the distribution of stresses and strains on the local bone tissue adjacent to the miniplate used for anchorage of orthodontic forces. Methods: A 3-dimensional model composed of a hemimandible and teeth was constructed using dental computed tomographic images, in which we assembled a miniplate with fixation screws. The uprighting and mesial movements of the mandibular second molar that was anchored with the miniplate were simulated. The miniplate was loaded with horizontal forces of 2, 5, and 15 N. A moment of 11.77 N.mm was also applied. The stress and strain distributions were analyzed, and their correlations with the bone remodeling criteria and miniplate stability were assessed. Results: When orthodontic loads were applied, peak bone strain remained within the range of bone homeostasis (100-1500 mu m strain) with a balance between bone formation and resorption. The maximum deformation was found to be 1035 mu m strain with a force of 5 N. At a force of 15 N, bone resorption was observed in the region of the screws. Conclusions: We observed more stress concentration around the screws than in the cancellous bone. The levels of stress and strain increased when the force was increased but remained within physiologic levels. The anchorage system of miniplate and screws could withstand the orthodontic forces, which did not affect the stability of the miniplate.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The finite element method (FEM) involves a series of computational procedures to calculate the stress in each element, which performs a model solution. Such a structural analysis allows the determination of stress resulting from external force, pressure, thermal change, and other factors. This method is extremely useful for indicating mechanical aspects of biomaterials and human tissues that can hardly be measured in vivo. The results obtained can then be studied using visualization software within the FEM environment to view a variety of parameters, and to fully identify implications of the analysis. Objective: An overview to show application of FEM in dentistry was undertaken. Literature review: This paper shows the basic concept, advances, advantages, limitations and applications of finite element method (FEM) in dentistry. Conclusion: It is extremely important to verify what the purpose of the study is in order to correctly apply FEM.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Introduction: The finite element method (FEM) involves a series of computational procedures to calculate the stress in each element, which performs a model solution. Such a structural analysis allows the determination of stress resulting from external force, pressure, thermal change, and other factors. This method is extremely useful for indicating mechanical aspects of biomaterials and human tissues that can hardly be measured in vivo. The results obtained can then be studied using visualization software within the FEM environment to view a variety of parameters, and to fully identify implications of the analysis. Objective: An overview to show application of FEM in dentistry was undertaken. Literature review: This paper shows the basic concept, advances, advantages, limitations and applications of finite element method (FEM) in dentistry. Conclusion: It is extremely important to verify what the purpose of the study is in order to correctly apply FEM.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The study of short implants is relevant to the biomechanics of dental implants, and research on crown increase has implications for the daily clinic. The aim of this study was to analyze the biomechanical interactions of a singular implant-supported prosthesis of different crown heights under vertical and oblique force, using the 3-D finite element method. Six 3-D models were designed with Invesalius 3.0, Rhinoceros 3D 4.0, and Solidworks 2010 software. Each model was constructed with a mandibular segment of bone block, including an implant supporting a screwed metal-ceramic crown. The crown height was set at 10, 12.5, and 15 mm. The applied force was 200 N (axial) and 100 N (oblique). We performed an ANOVA statistical test and Tukey tests; p < 0.05 was considered statistically significant. The increase of crown height did not influence the stress distribution on screw prosthetic (p > 0.05) under axial load. However, crown heights of 12.5 and 15 mm caused statistically significant damage to the stress distribution of screws and to the cortical bone (p <0.001) under oblique load. High crown to implant (C/I) ratio harmed microstrain distribution on bone tissue under axial and oblique loads (p < 0.001). Crown increase was a possible deleterious factor to the screws and to the different regions of bone tissue. (C) 2014 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Purpose: To evaluate the influence of the geometry and design of prosthetic crown preparations on stress distribution in compression tests, using finite element analysis (FEA). Materials and Methods: Six combinations of 3D drawings of all-ceramic crowns (yttria-stabilized zirconia framework and porcelain veneer) were evaluated: F, flat preparation and simplified crown; FC, flat preparation and crown with contact point; FCM, flat preparation and modified crown; A, anatomical preparation and simplified anatomical crown framework; AC, anatomical preparation and crown with contact point; and ACM, anatomical preparation and modified crown. Bonded contact types at all interfaces with the mesh were assigned, and the material properties used were according to the literature. A 200 N vertical load was applied at the center of each model. The maximum principal stresses were quantitatively and qualitatively analyzed. Results: The highest values of tensile stress were observed at the interface between the ceramics in the region under the load application for the simplified models (F and A). Reductions in stress values were observed for the model with the anatomical preparation and modified infrastructure (ACM). The stress distribution in the flat models was similar to that of their respective anatomical models. Conclusions: The modified design of the zirconia coping reduces the stress concentration at the interface with the veneer ceramic, and the simplified preparation can exert a stress distribution similar to that of the anatomical preparation at and near the load point, when load is applied to the center of the crown.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper is concerned with a modeling method that can be used for an experimental identification of a dynamic system. More specifically, an equivalent lumped element system is presented to represent in a unique and exact manner a complete proportional-derivative (PD) controlled servo positioning system having a flexible manipulator. The impedance and mobility approach is used to transform the P and D control gains to an electrical spring and an electrical damper, respectively. The impedance model method is used to transform the flexible manipulator to a coupled system between a single contact mass at the driving position and a series of noncontact masses each of which is connected to the contact mass via a resilient member. This method is applicable whenever the driving point response of such a manipulator is available. Experimental work is presented to support the theory developed.