93 resultados para fermion masses
Resumo:
We consider quantum electrodynamics in the quenched approximation including a four-fermion interaction with coupling constant g. The effective potential at stationary points is computed as a function of the coupling constants alpha and g and an ultraviolet cutoff LAMBDA, showing a minimum of energy in the (alpha, g) plane for alpha = alpha(c) = pi/3 and g = infinity. When we go to the continuum limit (LAMBDA --> infinity), keeping finite the dynamical mass, the minimum of energy moves to (alpha = 0, g = 1), which correspond to a point where the theory is trivial.
Resumo:
The helicity flip of a spin-1/2 Dirac particle interacting gravitationally with a scalar field is analyzed in the context of linearized quantum gravity. It is shown that massive fermions may have their helicity flipped by gravity, in opposition to massless fermions which preserve their helicity.
Resumo:
We investigate the analytic properties of finite-temperature self-energies of bosons interacting with fermions at one-loop order. A simple boson-fermion model was chosen due to its interesting features of having two distinct couplings of bosons with fermions. This leads to a quite different analytic behavior of the bosons self-energies as the external momentum K-mu=(k(0),k) approaches zero in the two possible limits. It is shown that the plasmon and Debye masses are consistently obtained at the pole of the corrected propagator even when the self-energy is analytic at the origin in the frequency-momentum space.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Supersymmetry is already observed in (i) nuclear physics where the same empirical formula based on a graded Lie group described even-even and odd-even nuclear spectra and (ii) in Nambu-BCS theory where there is a simple relationship between the energy gap of the basic fermion and the bosonic collective modes. We now suggest similar relationships between the large number of mesonic and baryonic excitations based on the SU(3) substructure in the U(15/30) graded Lie group.
Resumo:
The behaviour of the helicity of an initially left-handed beam of massive fermions first interacting with a Coulomb field and then with a charged scalar particle via a photon exchange is analysed. It is found that in both cases the massive fermions have their helicity flipped, while massless fermions seeem to be unaffected by the electromagnetic field as far as their helicity is concerned.
Resumo:
It is shown that massive fermions have their helicity flipped on account of their interaction with an electromagnetic field described by Podolsky's generalized electrodynamics. Massless fermions, in turn, seem to be unaffected by the electromagnetic field as far as their helicity is concerned. © Springer-Verlag 1997.
Resumo:
Starting from a decomposition of the self-dual field in (2 + 1) dimensions, we build up an alternative quantum theory which consists of a self-dual model coupled to a Maxwell-generalized Chern-Simons theory. We discuss the fermion-boson equivalence of this quantum theory by comparing it with the Thirring model. Using these results we were able to compute the mass of the bosonized fermions up to third order in 1/m. Some problems related to the number of poles of the effective propagator are also addressed.
Resumo:
We discuss the relationship between exact solvability of the Schroedinger equation, due to a spatially dependent mass, and the ordering ambiguity. Some examples show that, even in this case, one can find exact solutions. Furthermore, it is demonstrated that operators with linear dependence on the momentum are nonambiguous. (C) 2000 Elsevier Science B.V.
Resumo:
We investigate the possibility that four-fermion contact interactions give rise to the observed deviation from the standard model prediction for the weak charge of cesium, through one-loop contributions. We show that the presence of loops involving the third generation quarks can explain such a deviation.
Resumo:
We analyze the potential of the next generation of e+e- linear colliders to search for large extra dimensions via the production of fermion pairs in association with Kaluza-Klein gravitons (G), i.e., e+e- →ff̃G. This process leads to a final state exhibiting a significant amount of missing energy in addition to acoplanar lepton or jet pairs. We study in detail this reaction using the full tree level contributions due to the graviton emission and the standard model backgrounds. After choosing the cuts to enhance the signal, we show that a linear collider with a center-of-mass energy of 500 GeV will be able to probe quantum gravity scales from 0.96 (0.86) up to 4.1 (3.3) TeV at a 2 (5)σ level, depending on the number of extra dimensions. ©2001 The American Physical Society.
Resumo:
We propose a quite general ansatz for the dynamical mass in technicolor models. We impose on this ansatz the condition that it should lead to the deepest minimum of energy. This criterion selects a particular form of the technifermion self energy. © 2002 Elsevier Science B.V. All rights reserved.
Resumo:
We use a time-dependent dynamical mean-field-hydrodynamic model to study mixing-demixing in a degenerate fermion-fermion mixture (DFFM). It is demonstrated that with the increase of interspecies repulsion and/or trapping frequencies, a mixed state of a DFFM could turn into a fully demixed state in both three-dimensional spherically symmetric as well as quasi-one-dimensional configurations. Such a demixed state of a DFFM could be experimentally realized by varying an external magnetic field near a fermion-fermion Feshbach resonance, which will result in an increase of interspecies fermion-fermion repulsion, and/or by increasing the external trap frequencies. © 2006 The American Physical Society.