110 resultados para electrochemistry of porphyrins


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The surface properties of boron-doped nanocrystalline diamond films treated with H(2) plasma was investigated in regard to their electrochemical response for phenol oxidation. The surface of these films is relatively flat formed by crystallites with sizes of about 40 nm. X-ray photoelectron spectroscopy analyses showed that electrode surface has a high amount of C-H bonds. This behavior is in agreement with Mott-Schottky plot measurements concerning the flat band potential that presented a value as expected for hydrogenated diamond surface. This electrode presented the phenol detection limit of 0.08 mg L(-1) for low phenol concentrations from 40 to 250 mu mol L(-1).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Tin glycolate particles were prepared by a simple, one-step, polyol-mediated synthesis in air in which tin oxalate precursor was added to ethylene glycol and heated at reflux. Hexagonal-shaped, micron-sized tin glycolate particles were formed when the solution had cooled. A series of tin oxides was produced by calcination of the synthesized tin glycolate at 600-800 degrees C. It was revealed that the micron-sized, hexagonal-shaped tin glycolate now consisted of nanosized tin-based particles (80-120 nm), encapsulated within a tin glycolate shell. XRD, TGA, and FT-IR measurements were conducted to account for the three-dimensional growth of the tin glycolate particles. When applied as an anode material for Li-ion batteries, the synthesized tin glycolate particles showed good electro-chemical reactivity in Li-ion insertion/ deinsertion, retaining a specific capacity of 416mAhg(-1) beyond 50cycles. Ibis performance was significantly better than those of all the other tin oxides nanoparticles (< 160mAhg(-1)) obtained after heat treatment in air. We strongly believe that the buffering of the volume expansion by the glycolate upon Li-Sn alloying is the main factor for the improved cycling of the electrode.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The localized corrosion of Al-(5.03%)Zn-(1.67%)Mg-(0.23%)Cu alloys and high purity Al has been studied using electrochemical techniques, optical microscopy, SEM and EDX. The samples were previously submitted to different heat treatments in which coherent and incoherent MgZn 2 precipitates with different distribution and aggregation degree were produced. The influence of NaCl and Na 2SO 4, dissolved oxygen, immersion time and convection were studied. In NaCl solutions, pitting potentials for the alloys were more negative than for aluminium, indicating an increase in their susceptibility to localized corrosion. Moreover, annealed and cold-rolled alloys presented more negative pitting and repassivation potentials than those submitted to age hardening with direct or interrupted quenching. In annealed and cold-rolled samples, pit nucleation and propagation takes place in the zones where MgZn 2 is accumulated. In the case of the age-hardened alloys, a double pitting behaviour is observed, the first one in the magnesium and zinc enriched regions and the second in the matrix. While the cold water quenched alloy is susceptible to stress corrosion craking, the alloy submitted to the interrupted quenching process is less susceptible to intergranular attack. The sulphate ion shifts the pitting potential of aluminium and the alloys by chloride towards more positive values because it impedes local accumulations of the latter. © 1992 Chapman & Hall.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A viability study of an electrolytic process for the transformation of organic matter and free sulphide contained in wastewater from a fowl slaughterhouse in order to minimise odours was carried out Cast iron and aluminium electrodes were tried at 7.09 mA/cm2, under strong agitation, at 297 K. Conductivity, pH, chemical oxygen demand (COD), amount of settleable solids, and sulphide content were monitored with electrolysis duration. The cast iron electrodes were found to be viable for the elimination of soluble sulphides in the wastewater, leading to the elimination of its strong odour after short times of electrolysis. A significant decrease in COD was also attained.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Improvement of the operational stability of amperometric sensors based on Prussian Blue (PB) modified glassy carbon electrodes is presented. The long term performance of the sensors was evaluated by injection of hydrogen peroxide (5 μM in potassium buffer) solutions in a flow-injection system during a period of 5-10 h. The following parameters were investigated and correlated with the performance of the sensor: the times for electrodeposition and electrochemical activation, temperature, storage time, pH, composition of the buffer solution and of volume sample injected. These analytical characteristics of the modified electrode can be emphasized: initial sensitivity of 0.3 A cm-2 M-1, detection limit of ca. 0.5 μM, precise results (r.s.d.< 1.5%) and possibility to carry out around 50 samples (50 μL) per hour.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Co3O4 can be used as electrocatalyst for oxygen evolution reaction. The macro and microstructure of the oxide, obtained by compacting and sintering lithium-doped Co3O4 powder in atmosphere of dry air and in conditions of controlled temperature and time was analyzed by metallographic techniques. The porous material was characterized by XRD, SEM and EDS combined techniques. For working temperatures up to 1200°C, the pellet was consituted of particles with varying sizes over a wide range of particle size and, at higher temperatures CoO is formed and polymorphic transformation was observed. The materials were also characterized electrochemically in alkaline media by open circuit potential and potentiodynamic I/E measurements. The results were compared to those previously prepared by others by thermal deposition.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The development of electrochemical potentiokinetic methods as applied to the testing of metals and alloys is followed from its early phases up to its latest advances relating to intergranular corrosion, SCC and pitting corrosion tests of stainless steels and special alloys and to the examination of their structure and properties. In assessing the susceptibility to intergranular and pitting corrosion by potentiokinetic polarization tests, the polarization curves which apply to the bulk of the alloy grains (the matrix) must be distinguished from those pertaining to grain boundaries. Cyclic polarization measurements such as the electrochemical potentiokinetic reactivation (EPR) test make it possible to derive the alloy's susceptibility to intergranular, pitting and crevice corrosion from characteristic potentials and other quantities determined in the 'double loop' test. EPR is rapid and responds to the combined effects of a number of factors that influence the properties of materials. The electrochemical p otentiokinetic tests are sensitive enough to detect structural changes in heat treated materials ranging far beyond the stainless steels alone, and can be used for non-destructive testing aimed at elucidating the properties and behavior of materials. © 2001 Elsevier Science Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Hybrid organic-inorganic ionic conductors, also called ormolytes (organically modified electrolytes), were obtained by dissolution of LiClO 4 in siloxane-poly(propylene glycol) matrixes. The dynamic features of these nanocomposites were studied and correlated to their electrical properties. Solid-state nuclear magnetic resonance (NMR) spectroscopy was used to probe the effects of the temperature and nanocomposite composition on the dynamic behaviors of both the ionic species ( 7Li) and the polymer chains ( 13C). NMR, dc ionic conductivity, and DSC results demonstrate that the Li + mobility is strongly assisted by the segmental motion of the polymer chain above its glass transition temperature. The ac ionic conductivity in such composites is explained by use of the random free energy barrier (RFEB) model, which is agreement with their disordered and heterogenous structures. These solid ormolytes are transparent and flexible, and they exhibit good ionic conductivity at room temperature (up to 10 -4 S/cm). Consequently, they are very promising candidates for use in several applications such as batteries, sensors, and electrochromic and photoelectro-chemical devices.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Thermal spray coatings as Cr3C2-NiCr obtained by high velocity oxy-fuel spraying (HVOF) are mainly applied due to their behaviour against aggressive erosive-abrasive and corrosive atmospheres and their thermal stability at high temperatures [1]. In order to increase the corrosion protection that it offers to the substrate trying to close the interconnected pores, it is possible to apply a thermal treatment with the gun during the spraying of the coating. This treatment could be applied in different ways. One of these ways consists of spraying only a few layers of coating followed by thermal treatment and finally the spray of the rest of layers. This thermal treatment on spraying is studied related to the corrosion properties of the system. The study comprises the electrochemical characterisation of the system by open circuit potential (OC), polarisation resistance (Rp), cyclic voltammetry (CV) and impedance spectroscopy measurements (EIS). Optical and scanning electron microscopy characterisation (OM and SEM) of the top and cross-section of the system has been used in order to justify the electrochemical results.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Degradation of reactive dye Remazol Brilliant Orange 3R (RBO) has been performed using photoeletrocatalysis. A biased potential is applied across a titanium dioxide thin-film photoelectrode illuminated by UV light. It is suggested that charges photogenerated at the electrode surface give rise to chlorine generation and powerful oxidants (OH) that causes the dye solution to decolorize. Rate constants calculated from color decay versus time reveal a first-order reaction up to 5.0×10-5 mol l-1 in dye concentration. The best experimental conditions were found to be pH 6.0 and 1.0 mol l-1 NaCl when the photoelectrode was biased at +1V (versus SCE). Almost complete mineralization of the dye content (70% TOC reduction) was achieved in a 3-h period using these conditions. Effects of other electrolytes, dye concentration and applied potentials also have been investigated and are discussed. © 2003 Elsevier Science B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Iron nitroprusside Fe(II)NP was incorporated into a carbon paste electrode and the electrochemical studies were performed with cyclic voltammetry. The cyclic voltammogram of Fe(II)NP exhibits two redox couple with formal potential (E0')1 = 0.24 e (E0')2 = 0.85 V vs SCE attributed to Fe(II)/Fe(II) and Fe (II)(CN)5NO/Fe(III)(CN)5NO, respectively. The redox couple with (E0')2 = 0.85 V presents an electrocatalytic response for sulfhydryl compounds. The electrocatalytic oxidation of sulfhydryl compounds by the mediator has been used for the determination of L-cysteine and N-acetylcysteine. The modified graphite paste electrode gives a linear range from 9.2 x 10-4-2.0 x 10-2;; 9.6 x 10-4-1.4 x 10-2mol L-1 for the determination of L-cysteine and N-acetylcysteine, respectively, with detection limit of 1.9 x 10-4 mol L-1;; 1.5 x 10 -4 mol L-1 and relative standard desviations ± 5% and 1.5 x 10-3 mol L-1 ± 4% (n=3). The amperometric sensitivities are 0.024 and 0.027 μA/μmol L-1 for L-cysteine and N-acetylcysteine, respectively. The application of this electrode was tested and a commercial pharmaceutical product (Fluimucil) has been determined.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Turquoise blue 15 (AT15) is a reactive dye widely used in the textile industry to color natural fibers. The presence of these dyes in effluent and industrial wastewater is of considerable interest due ecotoxicological and environmental problems. The electrochemical reduction of this dye has been investigated in aqueous solution using cyclic voltammetry, controlled potential electrolysis and cathodic stripping voltammetry. Optimum conditions for dye discoloration by controlled potential electrolysis use an alkaline medium. Using cathodic stripping voltammetry a linear calibration graph was obtained from 5.00×10-8 mol L-1 to 1.00×10 -6 mol L-1 of AT15 at pH 4.0, using accumulation times of 180 and 240 s and an accumulation potential of 0.0 V. The proposed method was applied in direct determination of the dye in tap water and in textile industry effluent.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A flow-injection system with a glassy carbon disk electrode modified with Prussian Blue film is proposed for the determination of persulfate in commercial samples of hair bleaching boosters by amperometry. The detection was obtained by chronoamperometric technique and the sample is injected into the electrochemical cell in a wall jet configuration. Potassium chloride at concentration of 0.1 mol L-1 acted as sample carrier at a flow rate of 4.0 mL min-1 and supporting-electrolyte. For 0.025 V (vs. Ag/AgCl) applied voltage, the proposed system handles ca. 160 samples per hour (1.0 10-4 - 1.0 10-3 mol L-1 of persulfate), consuming about 200 μL sample and 11 mg KCl per determination. Typical linear correlations between electrocatalytic current and persulfate concentration was ca. 0.9998. The detection limit is 9.0 10-5 mol L-1 and the calculated amperometric sensibility 3.6 103 μA L mol -1. Relative standard deviation (n =12) of a 1.0 10-4 mol L-1 sample is about 2.2%. The method was applied to persulfate determination in commercial hair-bleaching samples and results are in agreement with those obtained by titrimetry at 95% confidence level and good recoveries (95 - 112%) of spiked samples were found. © 2003 by MDPI.