77 resultados para dS vacua in string theory


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Using the non-minimal version of the pure spinor formalism, manifestly super-Poincare covariant superstring scattering amplitudes can be computed as in topological string theory without the need of picture-changing operators. The only subtlety comes from regularizing the functional integral over the pure spinor ghosts. In this paper, it is shown how to regularize this functional integral in a BRST-invariant manner, allowing the computation of arbitrary multiloop amplitudes. The regularization method simplifies for scattering amplitudes which contribute to ten-dimensional F-terms, i.e. terms in the ten-dimensional superspace action which do not involve integration over the maximum number of theta's.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We show that for the pion-nucleon theory the thermal bubble graph is analytic at the origin of the momentum-frequency space, although the internal propagators in the loop have the same mass. This means that, for this theory, the thermal effective potential is uniquely defined. We then examine how a slight modification of the interaction term results in a theory for which the thermal bubble graph displays the usual nonanalyticity at the origin and the thermal effective potential is not uniquely defined.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The methods of effective field theory are used to explore the theoretical and phenomenological aspects of the torsion field. The spinor action coupled to the electromagnetic field and torsion possesses an additional softly broken gauge symmetry. This symmetry enables one to derive the unique form of the torsion action compatible with unitarity and renormalizability. It turns out that the antisymmetric torsion field is equivalent to a massive axial vector field. The introduction of scalars leads to serious problems which are revealed after the calculation of the leading two-loop divergences. Thus the phenomenological aspects of torsion may be studied only for the fermion-torsion systems. In this part of the paper we obtain upper bounds for the torsion parameters using present experimental data on forward-backward Z-pole asymmetries, data on the experimental limits on four-fermion contact interaction (LEP, HERA, SLAC, SLD, CCFR) and also TEVATRON limits on the cross section of a new gauge boson, which could be produced as a resonance at high energy pp collisions. The present experimental data enable one to put limits on the torsion parameters for the various ranges of the torsion mass. We emphasize that for a torsion mass of the order of the Planck mass no independent theory for torsion is possible, and one must directly use string theory. © 1999 Elsevier Science B.V.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Gauge fields in the light front are traditionally addressed via, the employment of an algebraic condition n·A = 0 in the Lagrangian density, where Aμ is the gauge field (Abelian or non-Abelian) and nμ is the external, light-like, constant vector which defines the gauge proper. However, this condition though necessary is not sufficient to fix the gauge completely; there still remains a residual gauge freedom that must be addressed appropriately. To do this, we need to define the condition (n·A) (∂·A) = 0 with n·A = 0 = ∂·A. The implementation of this condition in the theory gives rise to a gauge boson propagator (in momentum space) leading to conspicuous nonlocal singularities of the type (k·n)-α where α = 1, 2. These singularities must be conveniently treated, and by convenient we mean not only mathemathically well-defined but physically sound and meaningful as well. In calculating such a propagator for one and two noncovariant gauge bosons those singularities demand from the outset the use of a prescription such as the Mandelstam-Leibbrandt (ML) one. We show that the implementation of the ML prescription does not remove certain pathologies associated with zero modes. However we present a causal, singularity-softening prescription and show how to keep causality from being broken without the zero mode nuisance and letting only the propagation of physical degrees of freedom.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Using arguments based on BRST cohomology, the pure spinor formalism for the superstring in an AdS 5×S 5 background is proven to be BRST invariant and conformally invariant at the quantum level to all orders in perturbation theory. Cohomology arguments are also used to prove the existence of an infinite set of non-local BRST-invariant charges at the quantum level. © SISSA 2005.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We use an improved Langevin description that incorporates both additive and multiplicative noise terms to study the dynamics of phase ordering. We perform real-time lattice simulations to investigate the role played by different contributions to the dissipation and noise. Lattice-size independence is assured by the use of appropriate lattice counterterms. © 2006 American Institute of Physics.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We use the black hole entropy function to study the effect of Born-Infeld terms on the entropy of extremal black holes in heterotic string theory in four dimensions. We find, that after adding a set of higher curvature terms to the effective action, attractor mechanism, works and Born-Infeld terms contribute to the stretching of near horizon geometry. In the α′ → 0 limit, the solutions of attractor equations for moduli, fields and the resulting entropy, are in conformity with the ones for standard two charge black holes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Studies of the structure of excited baryons are key factors to the N* program at Jefferson Lab (JLab). Within the first year of data taking with the Hall B CLAS12 detector following the 12 GeV upgrade, a dedicated experiment will aim to extract the N* electrocouplings at high photon virtualities Q 2. This experiment will allow exploration of the structure of N* resonances at the highest photon virtualities ever achieved, with a kinematic reach up to Q2 = 12 GeV2. This high-Q 2 reach will make it possible to probe the excited nucleon structures at distance scales ranging from where effective degrees of freedom, such as constituent quarks, are dominant through the transition to where nearly massless bare-quark degrees of freedom are relevant. In this document, we present a detailed description of the physics that can be addressed through N* structure studies in exclusive meson electroproduction. The discussion includes recent advances in reaction theory for extracting N* electrocouplings from meson electroproduction off protons, along with Quantum Chromodynamics (QCD)-based approaches to the theoretical interpretation of these fundamental quantities. This program will afford access to the dynamics of the nonperturbative strong interaction responsible for resonance formation, and will be crucial in understanding the nature of confinement and dynamical chiral symmetry breaking in baryons, and how excited nucleons emerge from QCD. © 2013 World Scientific Publishing Company.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We attempt to incorporate inflation into a string theory realization of the chameleon mechanism. Previously, it was found that the volume modulus, stabilized by the supersymmetric potential used by Kachru, Kallosh, Linde and Trivedi (KKLT) and with the right choice of parameters, can generically work as a chameleon. In this paper, we ask whether inflation can be realized in the same model. We find that we need a large extra dimensions set-up, as well as a semi-phenomenological deformation of the Kähler potential in the quantum region. We also find that an additional KKLT term is required so that there are now two pieces to the potential, one which drives inflation in the early universe, and one which is responsible for chameleon screening at late times. These two pieces of the potential are separated by a large flat desert in field space. The scalar field must dynamically traverse this desert between the end of inflation and today, and we find that this can indeed occur under the right conditions. © 2013 SISSA, Trieste, Italy.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Pós-graduação em Física - IFT

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We discuss the relation between correlation functions of twist-two large spin operators and expectation values of Wilson loops along light-like trajectories. After presenting some heuristic field theoretical arguments suggesting this relation, we compute the divergent part of the correlator in the limit of large 't Hooft coupling and large spins, using a semi-classical world-sheet which asymptotically looks like a GKP rotating string. We show this diverges as expected from the expectation value of a null Wilson loop, namely, as (ln mu(-2))(2). mu being a cut-off of the theory. (C) 2012 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In a finite size bag like picture consisting of quarks (2 flavour) and gluons with SU(3) colour singlet restriction on the partition function and the chemical potential μ ≠ 0 with the constraint that the baryon number b = 0 and b = 1 for mesons and baryons, respectively we find a very good agreement with baryon density of states upto 2 GeV and with mesonic ones upto 1.3 GeV. Similar to a hadron-scale string theory our calculation also suggests that beyond 1.3 GeV there should exist exotic mesons.