97 resultados para bone marrow culture
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
O objetivo principal da nossa pesquisa foi avaliar o potencial de diferenciação osteogênica de células-tronco mesenquimais (MSC) obtidas da medula óssea do cão. As MSC foram separadas pelo método Ficoll e cultivadas sob duas condições distintas: DMEM baixa glicose ou DMEM/F12, ambos contendo L-glutamina, 20% de SFB e antibióticos. Marcadores de MSC foram testados, confirmando células CD44+ e CD34- através da citometria de fluxo. Para a diferenciação osteogênica, as células foram submetidas a quatro diferentes condições: Grupo 1, as mesmas condições utilizadas para a cultura de células primárias com os meios DMEM baixa glicose suplementado; Grupo 2, as mesmas condições do Grupo 1, mais os indutores de diferenciação dexametasona, ácido ascórbico e b-glicerolfosfato; Grupo 3, células cultivadas com meios DMEM/F12 suplementado; e Grupo 4, nas mesmas condições que no Grupo 3, mais indutores de diferenciação de dexametasona, ácido ascórbico e b-glicerolfosfato. A diferenciação celular foi confirmada através da coloração com alizarin red e da imunomarcação com o anticorpo SP7/Osterix. Nós observamos através da coloração com alizarin red que o depósito de cálcio foi mais evidente nas células cultivadas em DMEM/F12. Além disso, usando a imunomarcação com o anticorpo SP/7Osterix obtivemos positividade em 1:6 células para o Meio DMEM/F12 comparada com 1:12 para o meio DMEM-baixa glicose. Com base nos nossos resultados concluímos que o meio DMEM/F12 é mais eficiente para a indução da diferenciação de células-tronco mesenquimais caninas em promotores osteogênicos. Este efeito provavelmente ocorre em decorrência da maior quantidade de glicose neste meio, bem como da presença de diversos aminoácidos.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Mineralization of the articular cartilage is a pathological condition associated with age and certain joint diseases in humans and other mammals. In this work, we describe a physiological process of articular cartilage mineralization in bullfrogs. Articular cartilage of the proximal and distal ends of the femur and of the proximal end of the tibia-fibula was studied in animals of different ages. Mineralization of the articular cartilage was detected in animals at 1 month post-transformation. This mineralization, which appeared before the hypertrophic cartilage showed any calcium deposition, began at a restricted site in the lateral expansion of the cartilage and then progressed to other areas of the epiphyseal cartilage. Mineralized structures were identified by von Kossa's staining and by in vivo incorporation of calcein green. Element analysis showed that calcium crystals consisted of poorly crystalline hydroxyapatite. Mineralized matrix was initially spherical structures that generally coalesced after a certain size to occupy larger areas of the cartilage. Alkaline phosphatase activity was detected at the plasma membrane of nearby chondrocytes and in extracellular matrix. Apoptosis was detected by the TUNEL (TDT-mediated dUTP-biotin nick end-labeling) reaction in some articular chondrocytes from mineralized areas. The area occupied by calcium crystals increased significantly in older animals, especially in areas under compression. Ultrastructural analyses showed clusters of needle-like crystals in the extracellular matrix around the chondrocytes and large blocks of mineralized matrix. In 4-year-old animals, some lamellar bone (containing bone marrow) occurred in the same area as articular cartilage mineralization. These results show that the articular cartilage of R. catesbeiana undergoes precocious and progressive mineralization that is apparently stimulated by compressive forces. We suggest that this mineralization is involved in the closure of bone extremities, since mineralization appears to precede the formation of a rudimentary secondary center of ossification in older animals.
Resumo:
Protein-energy malnutrition is a syndrome in which anaemia together with multivitamin and mineral deficiency may be present. The pathophysiological mechanisms involved have not, however, yet been completely elucidated. The aim of the present study was to evaluate the pathophysiological processes that occur in this anaemia in animals that were submitted to protein-energy malnutrition, in particular with respect to Fe concentration and the proliferative activity of haemopoietic cells. For this, histological, histochemical, cell culture and immunophenotyping techniques were used. Two-month-old male Swiss mice were submitted to protein-energy malnutrition with a low-protein diet (20g/kg) compared with control diet (400 g/kg). When the experimental group had attained a 20% loss of their original body weight, the animals from both groups received, intravenously, 20IU erythropoietin every other day for 14 d. Malnourished animals showed a decrease in red blood cells, Hb concentration and reticulocytopenia, as well as severe bone marrow and splenic atrophy. The results for serum Fe, total Fe-binding capacity, transferrin and erythropoietin in malnourished animals were no different from those of the control animals. Fe reserves in the spleen, liver and bone marrow were found to be greater in the malnourished animals. The mixed colony-forming unit assays revealed a smaller production of granulocyte-macrophage colony-forming units, erythroid burst-forming units, erythroid colony-forming units and CD45, CD117, CD119 and CD71 expression in the bone marrow and spleen cells of malnourished animals. These findings suggest that, in this protein-energy malnutrition model, anaemia is not caused by Fe deficiency or erythropoietin deficiency, but is a result of ineffective erythropoiesis.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Background: There is some evidence showing that cyclosporin A (CsA) and nifedipine (NIF) affect bone metabolism. The purpose of this work was to study the effects of CsA and NIF, given alone or concurrently, on alveolar bone of rats of different ages. Methods: Rats 15, 30, 60, and 90 days old were treated daily with 10 mg/kg body weight of CsA subcutaneously injected and/or 50 mg/kg body weight of NIF/day given orally for 60 days. Alveolar bone of the first lower molars was morphologically and stereologically evaluated in serial 5 μm bucco-lingual paraffin sections, stained with hematoxylin and eosin. Serum calcium and alkaline phosphatase levels were measured in all animals at the end of the experimental period. Results: Rats treated with CsA or NIF alone or CsA and NIF concurrently showed decreased alveolar bone density. CsA was more effective than NIF. A significant decrease in serum calcium was found only in animals treated with CsA or CsA/NIF. The results were similar regardless of age. Conclusions: These results indicate that the decrease in the alveolar bone volume in rats caused by CsA and NIF alone or concurrently is not age dependent. Furthermore, NIF (50 mg/kg) did not further increase the loss of alveolar bone volume induced by CsA (10 mg/kg).
Resumo:
Natural killer cells constitute a population of lymphocytes able to non-specifically destroy virus-infected and some kinds of tumor cells. Since this lytic activity was shown by non-immunized animals the phenomenon is denominated natural killer (NK) activity and contrasts with specific cytotoxicity performed by cytolytic T lymphocytes (CTLs) because it does not depends on MHC-restricted peptides recognition. In fact, the main feature of most functional receptors of NK cells (NKRs) is their ability to be inhibited by different kinds of class I MHC antigens. In the middle of the 1950's, Burnet & Thomas forged the concept of tumor immunosurveillance and NK cells can be considered one of the main figures in this phenomenon both for effector and regulatory functions. In the present review the early studies on the biology of NK cells were revisited and both their antitumor activity and dependence on the activation by cytokines are discussed.
Resumo:
Mesenchymal Stem Cells (MSCs) have a high ability to renew and differentiate themselves into various lineages of conjunctive tissues. This study aimed to isolate the MSCs from murine bone marrow by using two different growth media and to characterize them with immunostaining with antivimentin antibody. We used six 2-week old BALB/c mice. Bone marrow was collected from mice's tibial and femoral channels and re-suspended in a final strength of 6x105 in Knockout-DMEM and high-glucose-DMEM media, supplemented by 10% FBS, and kept in a humidified 5% CO2 incubator at 37°C for 72 h, when non-adherent cells were removed during the change of medium. The number and density of adherent fibroblast-like colonies was greater with the Knockout-DMEM medium (within 5 days of culture) versus 10-20 days in DMEM-high glucose to get the same cellular concentration. The cells in both groups were highly positive for antivimentin antibody, characterizing them as MSCs. Obtaining MSCs as quickly as possible is essential for cell therapy field, especially when those cells are intended to be used for the repair of tissues from mesenchymal sources.
Resumo:
Some recent articles have reported that mesenchymal stem cells (MSCs) can be induced to express hepatocyte markers by transplanting them into animal models of liver damage, or by in vitro culture with growth factors and cytokines. In this study, the aim is to evaluate the behavior of MSCs subjected to induction of hepatocyte differentiation. The MSCs were isolated from the bone marrow of 4 normal donors, characterized and subjected to both in vitro and in vivo induction of hepatocyte differentiation. The in vitro induced cells showed morphological changes, acquiring hepatocyte-like features. However, the immunophenotype of these cells was not modified. The induced cells exhibited no increase in albumin, cytokeratin 18 or cytokeratin 19 transcripts, when analyzed by real-time RT-PCR. The expression of albumin, cytokeratin 18 and alpha fetoprotein was also unchanged, according to immunofluorescence tests. In vivo, the MSC demonstrated a potential to migrate to damaged liver tissue in immunodeficient mice. Taken together, the results suggest that bone marrow MSCs are incapable of in vitro differentiation into hepatocytes by the approach used here, but are capable of homing to damaged hepatic tissue in vivo, suggesting a role for them in the repair of the liver. This contribution to tissue repair could be associated with a paracrine effect exerted by these cells.
Resumo:
Background: Fluctuations of estradiol and progesterone levels caused by the menstrual cycle worsen asthma symptoms. Conflicting data are reported in literature regarding pro and anti-inflammatory properties of estradiol and progesterone.Methods: Female Wistar rats were ovalbumin (OVA) sensitized 1 day after resection of the ovaries (OVx). Control group consisted of sensitized-rats with intact ovaries (Sham-OVx). Allergic challenge was performed by aerosol (OVA 1%, 15 min) two weeks later. Twenty four hours after challenge, BAL, bone marrow and total blood cells were counted. Lung tissues were used as explants, for expontaneous cytokine secretion in vitro or for immunostaining of E-selectin.Results: We observed an exacerbated cell recruitment into the lungs of OVx rats, reduced blood leukocytes counting and increased the number of bone marrow cells. Estradiol-treated OVx allergic rats reduced, and those treated with progesterone increased, respectively, the number of cells in the BAL and bone marrow. Lungs of OVx allergic rats significantly increased the E-selectin expression, an effect prevented by estradiol but not by progesterone treatment. Systemically, estradiol treatment increased the number of peripheral blood leukocytes in OVx allergic rats when compared to non treated-OVx allergic rats. Cultured-BAL cells of OVx allergic rats released elevated amounts of LTB4 and nitrites while bone marrow cells increased the release of TNF-α and nitrites. Estradiol treatment of OVx allergic rats was associated with a decreased release of TNF-α, IL-10, LTB4 and nitrites by bone marrow cells incubates. In contrast, estradiol caused an increase in IL-10 and NO release by cultured-BAL cells. Progesterone significantly increased TNF- α by cultured BAL cells and bone marrow cells.Conclusions: Data presented here suggest that upon hormonal oscillations the immune sensitization might trigger an allergic lung inflammation whose phenotype is under control of estradiol. Our data could contribute to the understanding of the protective role of estradiol in some cases of asthma symptoms in fertile ans post-menopausal women clinically observed. © 2010 de Oliveira et al; licensee BioMed Central Ltd.
Resumo:
The noxious effects of low or effective dose exposure to single or mixed pesticides on macrophage activity and the lymphohematopoietic organs were investigated. Male Wistar rats were orally exposed to dichlorvos, dicofol, endosulfan, dieldrin and permethrin, either as single or combined mixtures during a 28-day study containing eight groups: one group received a semipurified diet (non-treated); two groups received a semipurified diet containing low dose mixture (dieldrin 0.025 mg/kg, endosulfan, 0.6 mg/kg, dicofol 0.22 mg/kg, dichlorvos 0.23 mg/kg, permethrin 5 mg/kg) or an effective dose mixture (dichlorvos 2.3 mg/kg, dicofol 2.5 mg/kg, endosulfan 2.9 mg/kg, dieldrin 0.05 mg/kg and permethrin 25.0 mg/kg), respectively; the other five groups received a semipurified diet containing each single pesticide in effective doses. At sacrifice, the thymus, spleen, mesenteric lymph nodes, Payer's patches and bone marrow were removed for histological analysis. Peritoneal macrophages were obtained to determine the phagocytosis and spreading indexes and tumoral necrosis factor alpha (TNF-α), nitric oxide (NO) and H2O2 production. Exposure to pesticide mixtures did not alter the percentage of macrophage phagocytosis and spreading, TNF-α production or the NO and H2O2 release when compared to the non-treated group. Neither was there any apparent evidence that a pesticide mixture at low or effective doses altered the histological structure of the lymphohematopoietic organs. The findings indicate that short-term treatment with pesticide mixtures did not induce an apparent immunotoxic effect in male Wistar rats. © 2013 Copyright Taylor and Francis Group, LLC.
Resumo:
The cysteine proteinase inhibitor cystatin C inhibited RANKL-stimulated osteoclast formation in mouse bone marrow macrophage cultures, an effect associated with decreased mRNA expression of Acp5, Calcr, Ctsk, Mmp9, Itgb3, and Atp6i, without effect on proliferation or apoptosis. The effects were concentration dependent with half-maximal inhibition at 0.3 μM. Cystatin C also inhibited osteoclast formation when RANKL-stimulated osteoclasts were cultured on bone, leading to decreased formation of resorption pits. RANKL-stimulated cells retained characteristics of phagocytotic macrophages when cotreated with cystatin C. Three other cysteine proteinase inhibitors, cystatin D, Z-RLVG-CHN2 (IC50 0.1 μM), and E-64 (IC 50 3 μM), also inhibited osteoclast formation in RANKL-stimulated macrophages. In addition, cystatin C, Z-RLVG-CHN2, and E-64 inhibited osteoclastic differentiation of RANKL-stimulated CD14+ human monocytes. The effect by cystatin C on differentiation of bone marrow macrophages was exerted at an early stage after RANKL stimulation and was associated with early (4 h) inhibition of c-Fos expression and decreased protein and nuclear translocation of c-Fos. Subsequently, p52, p65, IκBα, and Nfatc1 mRNA were decreased. Cystatin C was internalized in osteoclast progenitors, a process requiring RANKL stimulation. These data show that cystatin C inhibits osteoclast differentiation and formation by interfering intracellularly with signaling pathways downstream RANK. © FASEB.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)