75 resultados para advanced materials
Resumo:
The broader knowledge about physical and mechanical properties of wood allows reliable timber structures design. Even little addressed in the literature, in several situations Poisson's ratios are required for the evaluation of stresses acting on structural elements. This study aimed to obtain values of Poisson's ratios (ν), plans Longitudinal-Radial (νLR) and Longitudinal-Tangential (νLT), for species Peroba Rosa (Aspidosperma polyneuron) and Jatobá (Hymenaea courbaril L.). For this purpose, forty samples Peroba Rosa and eight samples of Jatobá were prepared for testing in compression parallel to the grain, following the recommendations of ABNT NBR 7190 standard. The results of means confidence intervals, considered at the level of 5% significance, revealed that the Poisson's ratios νLR e νLT to Peroba Rosa are 0.27 and 0.42, respectively, and 0.25 and 0.43 to Jatobá.
Resumo:
One of the energy alternatives that provide utility, flexibility, cleanliness and economy is biomass, such as forest waste (wood) and agricultural (sugarcane bagasse, rice husks, coffee pods, etc.). However, with its increasing supply and use grows also the concern of industries to invest in monitoring and control of emissions into the atmosphere, because during biomass burning are emitted as exhaust gases, fine particles known as particulates, which greatly contribute to the triggering of serious health problems to humans, in addition to the environmental damage. With that, this work aimed to conduct a monitoring of particulate and gaseous pollutants emissions to the atmosphere from the burning of various types of biomass used by industries. The equipment used for sampling were the optical monitor DataRAM 4 and the Unigas3000 + gas sampler. The results showed that biomass coffee pods presented the greatest concentration of particulates (485119 μg m-3) with particle diameters between 0.0602 μm and 0.3502 μm, i.e. the most ultrafine particles, harmful to human health and the environment. The largest emissions of CO and NOx were observed, respectively, for the coffee pods (3500 ppm) and for the rice husk (48 ppm). As for the superior calorific value (PCS), the best of fuel, with higher PCS, was the Eucalyptus grandis.
Resumo:
In recent years the production of products derived from wood and bamboo are increasing, due to the search for a more rational exploitation of these raw materials. Amongst these products, the particleboards production combine sustainability and rationality in the use of these materials. In this context, this work has the objective to study the application of alternative raw materials in the manufacture of Medium Density Particleboards (MDP), using residues from industrial processimg of coffee and bamboo. MDP had been produced with particles of giganteus bamboo of the Dendrocalamus species and particle of coffee rind in the intermediate layer of the particleboard, bonded with polyurethane resin based on castor oil. The physical and mechanical characterization was carried out accordingly to NBR 14810-3 (2006). The physical properties evaluated were: of water absorption for 2h and 24h; thickness swallowing for 2h and 24h; density, humidity content. The mechanical properties evaluated were: Tensile strength, static bending (MOR and MOE). The results were compared with NBR 14810-2 (2006) and also with the ANSI A208-1 (1993). The physical performance of these particleboards was below the values recommend by the Brazilian norm. Also the mechanical characteristics are not improve, demonstrating that the inclusion of coffee rind did not benefit the physical characteristics and nor the mechanical ones. However it can be used as construction materials for partitions and ceiling panels.
Resumo:
In this research the aim was produce and evaluate a plastic composite using recycled polypropylene (PP) and fibers from sugarcane bagasse residues (SC), without the use of additives. This analysis was based on laboratorial tests for physical and mechanical characterization, according to the standards ASTM D256-00, D638-101 and D570-98 were analyzed: water absorption, thickness swelling, impact resistance, tensile strength and its correspondent deformation. For comparison it was elaborated three different compositions: 100% PP; 80% PP+20%SC; 70%PP+30%SC. The results indicate a positive correlation with the content of fiber and water absorption and thickness swelling. In the tension tests, the composites with fibers increase the value of resistance for physical efforts, bringing advantages as durability and integrity of the material, showing a viability of the composites.
Resumo:
Numerous factors influencing the surface quality of wood after machining, among them we highlight the machining parameters and the properties of the wood. In the analysis of the influence of these factors on machining and in determining the quality measurement systems are used to obtain surface characteristics, these systems are divided into methods of contact and non-contact. The method for mechanical contact performed with the aid of the surface roughness tester is the most valued in the measurement of roughness of wood, however, aiming at a greater agility in these measurements, there is a need to seek alternatives for evaluation of surface quality, and one of these options is to use the forms of indirect measurements of this quality, as for example, the use of noise emission during the machining process. With this, the aim was to analyze the influence of the moisture content of the wood, at different levels, on surface quality of the species Pinus elliottii, determined by the method of mechanical probing move and relate this roughness with the sound emission issued for each class of humidity, during machining. The planning of experiments and statistical analyses were performed with the help of Taguchi method. The specimens were conditioned in greenhouses climatizadoras automatics for obtaining three classes of humidity. Machining tests of wooden pieces were performed on a machining center specific for this type of material. The roughness values were measured by a roughness verifier and the noise emission values were measured by for a measurer sound pressure level. Statistically significant differences were observed, the significance level of 10 %, on roughness and noise emission between the three levels of moisture. It was observed that with the increase in the moisture content occurred an increase of roughness and a reduction in noise emission. Monitoring of surface quality through noise level is an interesting alternative to the method of mechanical contact.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Nowadays, with increase amounts of sludge derived from the treatment of domestic sewage put pressure into research on systems for the adequate use of these materials. The aim of the present work is to study the use of sludge ash, from sintering and calcinated process, as a raw material for the ceramic industry. Using the sewage sludge ashes as ceramic raw material there will be no contamination of soil and underground water. Metals and toxic compounds like Al, Fe, Ba, Cr, Cu, Mn and Zn oxides were analyzed and characterized by X-ray fluorescence (XRF), scanning electron microscopy (SEM) and plasma emission spectroscopy (ICP-OES). The leached material was chemically analyzed where the integration of oxides into the ceramic matrix of sludge ash was observed. Residual decomposition was analyzed by TG, DTG and DTA curves.
Resumo:
Objectives: The aim of the present investigation was to histologically analyze the effect of using lyophilized bovine bone (GenOx (R) organic matrix) with (or without) guided tissue regeneration (using a decalcified cortical osseous membrane [GenDerm (R)]) on bone healing in surgically created critical-size defects created in rat tibia.Material and methods: Surgical critical-size bone defects were created in 64 animals that were randomly divided into four groups: group I (control); group II (defect filled with GenOx (R)); group III (defect covered by GenDerm (R)); group IV (defect filled with GenOx (R) and covered by GenDerm (R)). Animals were killed at 30 or 90 days post-surgery. The specimens were embedded in paraffin, serially cut, and stained with hematoxylin and eosin for analysis under light microscopy. The formation of new bone in the cortical area of the defect was histomorphometrically evaluated.Results: All experimental groups demonstrated superior bone healing compared with the control group. However, group IV samples showed evidence of more advanced healing at both 30 and 90 days post-surgery as compared with the other experimental groups.Conclusions: The bovine organic bone graft GenOx (R) associated with GenDerm (R) this produced the best treatment results in the case of critical-size defects in rat tibia.
Resumo:
The aim of this work is to evaluate the mechanism of stock removal and the ground surface quality of advanced ceramics grounded by a plane tangential grinding process with diamond grinding wheels. The analysis of the grinding performance was done regarding the cutting surface wear behavior of the grinding wheel for ceramic workpieces. The discussion about the results emphasized the wear mechanism of the grinding wheel cutting surface and the cutting phenomenology of the grinding process. The grounded surface was evaluated using Scanning Electron Microscopy (SEM). © 1999 Society of Automotive Engineers, Inc.
Resumo:
The aim of this work is to evaluate the mechanism of stock removal and the ground surface quality of advanced ceramics machined by a surface grinding process using diamond grinding wheels. The analysis of the grinding performance was done regarding the cutting surface wear behavior of the grinding wheel for ceramic workpieces. The ground surface was evaluated using Scanning Electron Microscopy (SEM). As a result it can be said that the mechanism of material removal in the grinding of ceramic is largely one of brittle fracture. The increase of the hmax can reduce the tangential force required by the process. Although, it results in an increase in the surface damage, reducing the mechanical properties of the ground component.
Resumo:
Automotive parts manufacture by machining process using silicon nitride-based ceramic tool development in Brazil already is a reality. Si 3N4-based ceramic cutting tools offer a high productivity due to their excellent hot hardness, which allows high cutting speeds. Under such conditions the cutting tool must be resistant to a combination of mechanical, thermal and chemical attacks. Silicon nitride based ceramic materials constitute a mature technology with a very broad base of current and potential applications. The best opportunities for Si3N 4-based ceramics include ballistic armor, composite automotive brakes, diesel particulate filters, joint replacement products and others. The goal of this work was to show latter advance in silicon nitride manufacture and its recent evolution on machining process of gray cast iron, compacted graphite iron and Ti-6Al-4V. Materials characterization and machining tests were analyzed by X-Ray Diffraction, Scanning Electron Microscopy, Vickers hardness and toughness fracture and technical norm. In recent works the authors has been proved to advance in microstructural, mechanical and physic properties control. These facts prove that silicon nitride-based ceramic has enough resistance to withstand the impacts inherent to the machining of gray cast iron (CI), compacted graphite iron (CGI) and Ti-6Al-4V (6-4). Copyright © 2008 SAE International.
Resumo:
This paper introduces a methodology for predicting the surface roughness of advanced ceramics using Adaptive Neuro-Fuzzy Inference System (ANFIS). To this end, a grinding machine was used, equipped with an acoustic emission sensor and a power transducer connected to the electric motor rotating the diamond grinding wheel. The alumina workpieces used in this work were pressed and sintered into rectangular bars. Acoustic emission and cutting power signals were collected during the tests and digitally processed to calculate the mean, standard deviation, and two other statistical data. These statistics, as well the root mean square of the acoustic emission and cutting power signals were used as input data for ANFIS. The output values of surface roughness (measured during the tests) were implemented for training and validation of the model. The results indicated that an ANFIS network is an excellent tool when applied to predict the surface roughness of ceramic workpieces in the grinding process.
Resumo:
An alternative for grinding of sintered ceramic is the machining on the green state of the ceramic, which presents easy cutting without the introduction of harmful defects to its mechanical resistance. However, after sintering there are invariably distortions caused by the heterogeneous distribution of density gradients, which are located in the most outlying portions of the compacted workpiece. In order to minimize these density gradients, this study examined the influence of different allowance values and their corresponding influence in distortion after sintering alumina specimens with 99.8 % purity by turning operation using cemented carbide tool. Besides distortion, other output variables were analyzed, such as tool wear, cutting force and surface roughness of green and sintered ceramics. Results showed a distortion reduction up to 81.4%. Green machining is beneficial for reducing surface roughness in both green and sintered states. Cutting tool wear has a direct influence on surface roughness and cutting force.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)