255 resultados para adrenergic receptors
Resumo:
1. The aim of the present study was to examine the effects of long-term nitric oxide (NO) blockade on contractions of the rat ileum induced by muscarinic agonists.2. Male Wistar rats received the NO synthesis inhibitor N (G) -nitro-l-arginine methyl ester (l-NAME; 20 mg/rat per day) in drinking water for 7, 15, 30 and 60 days. Concentration-responses curves to methacholine and carbachol were obtained and pEC(50) values were calculated. Saturation binding assays were performed in membranes prepared from rat ileum after 60 days of l-NAME treatment and the dissociation constant (K-D ) and maximal number of binding sites (B-max ) were determined by Scatchard analysis.3. The NO synthase activity of the ileum was markedly reduced in all l-NAME-treated groups. At 60 days after l-NAME treatment, a significant increase in the potency of methacholine (fourfold) and carbachol (threefold) was observed. In binding studies, we found a significant increase in B-max for [(3) H]-quinuclidinyl benzilate of approximately 57% in the l-NAME treated group without any significant change in K-D values. The contractile response to methacholine was not modified by the soluble guanylate cyclase inhibitor 1H-[1,2,4]oxadiazolo-[4,3-a]quinoxalin-1-one (3 mumol/L). No morphological alterations in the rat ileum were observed in l-NAME-treated rats.4. Our findings suggest that treatment with l-NAME for 60 days induces a marked increase in the potency of methacholine and carbachol, as well as an increase in receptor number in the rat ileum.
Resumo:
We evaluated the potency of isoproterenol, carbachol, pilocarpine and calcitonin gene-related peptide (CGRP) in the rat right atria at 30, 60 and 90 days after neonatal capsaicin treatment. Neonatal rats were pretreated on the second day of life with capsaicin (50 mg/kg). The capsaicin pretreatment caused a five-fold rightward shift at the pEC(50) level on the concentration-response curves to isoproterenol in 30-day-old rats. Propranolol (10 mg/kg, given 15 min prior to capsaicin treatment) prevented this subsensitivity. No changes in the potency of isoproterenol were observed at 60 and 90 days after capsaicin pretreatment. The potency and maximal responses of CGRP in the right atria in 30-day-old rats were significantly higher than in 60- and 90-day-old rats; however, no differences were found between control and capsaicin groups. The potency and maximal responses to carbachol and pilocarpine were not changed in all groups. The neonatal capsaicin treatment reduced by about 74% the CGRP content in the heart in all groups. In summary, capsaicin treatment in newborn rats produces a desensitization of chronotropic response mediated by beta-adrenoceptors in isolated right atria from 30-day-old rats possibly due to a massive release of catecholamines. (C) 2002 Elsevier B.V. Ireland Ltd. All rights reserved.
Resumo:
Recent studies have shown the existence of two important inhibitory mechanisms for the control of NaCl and water intake: one mechanism involves serotonin in the lateral parabrachial nucleus (LPBN) and the other depends on alpha(2)-adrenergic/imidazoline receptors probably in the forebrain areas. In the present study we investigated if alpha(2)-adrenergic/imidazoline and serotonergic inhibitory mechanisms interact to control NaCl and water intake. Male Holtzman rats with cannulas implanted simultaneously into the lateral ventricle (LV) and bilaterally into the LPBN were used. The ingestion of 0.3 M NaCl and water was induced by treatment with the diuretic furosemide (10 mg/kg of body weight)+the angiotensin converting enzyme inhibitor captopril (5 mg/kg) injected subcutaneously 1 h before the access of rats to water and 0.3 M NaCl. Intracerebroventricular (i.c.v.) injection of the alpha(1)-adrenergic/imidazoline agonist clonidine (20 nmol/l RI) almost abolished water (1.6 +/- 1.2, vs. vehicle: 7.5 +/- 2.2 ml/2 h) and 0.3 M NaCl intake (0.5 +/- 0.3, vs. vehicle: 2.2 0.8 ml/2 h). Similar effects were produced by bilateral injections of the 5HT(2a/2b) serotonergic agonist 2,5-dimetoxy-4-iodoamphetamine (DOI, 5 mug/0.2 mul each site) into the LPBN on water (3.6 +/- 0.9 ml/2 h) and 0.3 M NaCl intake (0.4 +/- 0.2 m1/2 h). Injection of the (alpha(2)-adrenergic/imidazoline antagonist idazoxan (320 nmol) i.c.v. completely blocked the effects of clonidine on water (8.4 +/- 1.5 ml/2 h) and NaCl intake (4.0 +/- 1.2 ml/2 h), but did not change the effects of LPBN injections of DOI on water (4.2 +/- 1.0 ml/2 h) and NaCl intake (0.7 +/- 0.2 ml/2 h). Bilateral injections of methysergide (4 mug/0.2 mul each site) into the LPBN increased 0.3 M NaCl intake (6.4 +/- 1.9 ml/2 h), not water intake. The inhibitory effect of i.c.v. clonidine on water and 0.3 M NaCl was still present after injections of methysergide into the LPBN (1.5 +/- 0.8 and 1.7 +/- 1.4 ml/2 h, respectively). The results show that the inhibitory effects of the activation of a,-adrenergic/imidazoline receptors in the forebrain are still present after blockade of the LPBN serotonergic mechanisms and vice versa for the activation of serotonergic mechanisms of the LPBN. Therefore, each system may act independently to inhibit NaCl and water intake. (C) 2002 Elsevier B.V. B.V. All rights reserved.
Resumo:
We previously reported that truncation of the N-terminal 79 amino acids of alpha(1D)-adrenoceptors (Delta(1-79)alpha(1D)-ARs) greatly increases binding site density. In this study, we determined whether this effect was associated with changes in alpha(1D)-AR subcellular localization. Confocal imaging of green fluorescent protein (GFP)-tagged receptors and sucrose density gradient fractionation suggested that full-length alpha(1D)-ARs were found primarily in intracellular compartments, whereas Delta(1-79)alpha(1D)-ARs were translocated to the plasma membrane. This resulted in a 3- to 4-fold increase in intrinsic activity for stimulation of inositol phosphate formation by norepinephrine. We determined whether this effect was transplantable by creating N-terminal chimeras of alpha(1)-ARs containing the body of one subtype and the N terminus of another (alpha(1A) NT-D, alpha(1B) NT-D, alpha(1D) NT-A, and alpha(1D)NT-B). When expressed in human embryonic kidney 293 cells, radioligand binding revealed that binding densities of alpha(1A)- or alpha(1B)-ARs containing the alpha(1D)-N terminus decreased by 86 to 93%, whereas substitution of alpha(1A)- or alpha(1B)-N termini increased alpha(1D)-AR binding site density by 2- to 3-fold. Confocal microscopy showed that GFP-tagged alpha(1D)NT-B-ARs were found only on the cell surface, whereas GFP-tagged alpha(1B)NT-D-ARs were completely intracellular. Radioligand binding and confocal imaging of GFP-tagged alpha(1D)- and Delta(1-79)alpha(1D)-ARs expressed in rat aortic smooth muscle cells produced similar results, suggesting these effects are generalizable to cell types that endogenously express alpha(1D)-ARs. These findings demonstrate that the N-terminal region of alpha(1D)-ARs contain a transplantable signal that is critical for regulating formation of functional bindings, through regulating cellular localization.
Resumo:
Cholinergic and adrenergic agonists and antagonists were injected directly into the subfornical organ (SFO), via implanted cannulae, and the volume of water ingested was recorded over a period of 1 hour after injection. Application of 2 nmol carbachol caused intense water intake in 100% of the animals (8.78±0.61 ml), with a very short intake latency. When the 2 nmol carbachol dose was preceded by increased doses of atropine, a progressive reduction in water intake was observed, with complete blockage of the thirst-inducing response to carbachol at the 20 nmol dose level with atropine. Followed by several doses of hexamethonium, the water intake caused by application of 2 nmol carbachol was reduced, although the response was not totally blocked. Injection of 80 nmol of nicotine had a significant thirst-inducing inducing effect in 50% of the animals studied (1.06±0.18 ml) and increase in water intake was further reduced by application of increased doses of hexamethonium. Raising the dose levels of noradrenaline into th SFO caused an increase in water intake although to a lesser degree than was observed after carbachol injection. When the 40 nmol dose of noradrenaline was preceded by increased doses of propranolol (5 to 40 nmol), there was a gradual reduction in water intake, with total blockage at the 40 nmol dose. Application of phentolamine in doses of 10 to 80 nmol caused no reduction in water intake after 40 nmol of noradrenaline. Application of isoproterenol at doses from 20 to 160 nmol into the SFO caused a dosedependent increase in water intake which was blocked by previous applications of propranolol. These results support the hypothesis that the water intake caused by chemical stimulation of the SFO is mainly due to muscarinic cholinergic receptors, although the influence of nicotinic receptors or participation of adrenergic mediation should not be ruled out. © 1984.
Resumo:
The effect of noradrenaline, isoproterenol, phentolamine and propranolol, injected into the basolateral nuclei of the amygdala on water intake, was investigated in male Holtzman rats. The injection of noradrenaline (40 nmol) into the amygdaloid complex (AC) of satiated rats produced no change in water intake (0.05 ± 0.03 ml/1 hour). The injection of isoproterenol (40 nmol) produced an increase in water intake in sedated rats (1.93 ± 0.23 ml/1 hour). Noradrenaline injected into the AC produced a decrease in water intake in deprived rats (0.40 ± 0.19 ml/1 hour). The injection of isoproterenol into the AC of deprived rats produced no change in water intake in comparison with control (11.65 ± 1.02 and 10.92 ± 0.88 ml/1 hour, respectively). When compared with control values, phentolamine injected prior to noradrenaline blocked the inhibitory effect of noradrenaline on water intake in deprived rats (10.40 ± 1.31 ml/1 hour). Propranolol blocked the effect of isoproterenol in satiated rats (0.85 ± 0.49 ml/1 hour) and also blocked the water intake induced by deprivation (0.53 ± 0.38 ml/1 hour). In satiated and deprived animals the injection of phentolamine before hexamethonium blocked the inhibitory effect of hexamethonium on water intake. In satiated animals, when hexamethonium was injected alone, water intake was 0.39 ± 0.25 ml/1 hour and when hexamethonium was injected with phentolamine, water intake was 1.04 ± 0.3 ml/1 hour. In deprived animals, hexamethonium alone blocked water intake (0.40 ± 0.17 ml/1 hour) and when injected with phentolamine it elicited an intake of 9.7 ± 1.8 ml/1 hour. these results clearly demonstrate the participation of catecholaminergic receptors of the AC in the regulation of water intake.
Resumo:
In the present experiments, we investigated a possible involvement of noradrenergic receptors of the lateral hypothalamus (LH) in the water intake and pressor response induced by cholinergic stimulation of the medial septal area (MSA) in rats. The cholinergic agonist carbachol (2 nmol) injected into the MSA induced water intake and pressor response. The injection of an α2-adrenergic agonist, clonidine (20 and 40 nmol), but not of an α1-adrenergic agonist, phenylephrine (80 and 160 nmol), into the LH inhibits the water intake induced by carbachol injected into the MSA. The injection of clonidine or phenylephrine into the LH produced no change in the MAP increase induced by carbachol injected into the MSA. The present results suggest that adrenergic pathways involving the LH are important for the water intake, but not for the pressor response, induced by cholinergic activation of the MSA. © 1994.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Hypoxia causes a regulated decrease in body temperature (Tb). There is circumstantial evidence that the neurotransmitter serotonin (5-HT) in the anteroventral preoptic region (AVPO) mediates this response. However, which 5-HT receptor(s) is (are) involved in this response has not been assessed. Thus, we investigated the participation of the 5-HT receptors (5-HT(1), 5-HT(2), and 5-HT(7)) in the AVPO in hypoxic hypothermia. To this end, Tb of conscious Wistar rats was monitored by biotelemetry before and after intra-AVPO microinjection of methysergide (a 5-HT(1) and 5-HT(2) receptor antagonist, 0.2 and 2 mu g/100 nL), WAY-100635 (a 5-HT(1A) receptor antagonist, 0.3 and 3 mu g/100 nL), and SB-269970 (a 5-HT(7) receptor antagonist, 0.4 and 4 mu/100 nL), followed by 60 min of hypoxia exposure (7% O(2)). During the experiments, the mean chamber temperature was 24.6 +/- 0.7 degrees C (mean +/- SE) and the mean room temperature was 23.5 +/- 0.8 degrees C (mean +/- SE). Intra-AVPO microinjection of vehicle or 5-HT antagonists did not change Tb during normoxic conditions. Exposure of rats to 7% of inspired oxygen evoked typical hypoxia-induced hypothermia after vehicle microinjection, which was not affected by both doses of methysergide. However, WAY-100635 and SB-269970 treatment attenuated the drop in Tb in response to hypoxia. The effect was more pronounced with the 5-HT7 antagonist since both doses (0.4 and 4 mu g/0.1 mu L) were capable of attenuating the hypothermic response. As to the 5-HT(1A) antagonist, the attenuation of hypoxia-induced hypothermia was only observed at the higher dose. Therefore, the present results are consistent with the notion that 5-HT acts on both 5-HT(1A) and 5-HT7 receptors in the AVPO to induce hypothermia, during hypoxia. (c) 2005 Elsevier B.V All rights reserved.
Resumo:
Hypothalamus is a site of integration of the hypoxic and thermal stimuli on breathing and there is evidence that serotonin (5-HT) receptors in the anteroventral preoptic region (AVPO) mediate hypoxic hypothermia. Once 5-HT is involved in the hypoxic ventilatory response (HVR), we investigated the participation of the 5-HT receptors (5-HT1, 5-HT2 and 5-HT7) in the AVPO in the HVR. To this end, pulmonary ventilation (V-E) of rats was measured before and after intra-AVPO microinjection of methysergide (a 5-HT1 and 5-HT2 receptor antagonist), WAY-100635 (a 5-HT1A receptor antagonist) and SB-269970 (a 5-HT7 receptor antagonist), followed by 60 min of hypoxia exposure (7% O-2). Intra-AVPO microinjection of vehicles or 5-HT antagonists did not change VE during normoxic conditions. Exposure of rats to 7% O-2 evoked typical hypoxia-induced hyperpnea after vehicle microinjection, which was not affected by methysergide. WAY-100635 and SB-269970 treatment caused an increased HVR, due to a higher tidal volume. Therefore, the current data provide the evidence that 5-HT acting on 5-HT1A and 5-HT7 receptors in the AVPO exert an inhibitory modulation on the HVR. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)