63 resultados para adjusted weights
Resumo:
This study investigates the genetic association of the SNP present in the ACTA1 gene with performance traits, organs and carcass of broilers to help marker-assisted selection of a paternal broiler line (TT) from EMBRAPA Swine and Poultry, Brazil. Genetic and phenotypic data of 1,400 broilers for 68 traits related to body performance, organ weights, weight of carcass parts, and yields as a percentage of organs and carcass parts were used. The maximum likelihood method, considering 4 analytical models, was used to analyze the genetic association between the SNP and these important economic traits. The association analysis was performed using a mixed animal model including the random effect of the animal (polygenic), and the fixed effects of sex (2 levels), hatch (5 levels) and SNP (3 levels), besides the random error. The traits significantly associated (P < 0.05) with the SNP were analyzed, along with body weight at 42 days of age (BW42), by the restricted maximum likelihood method using the multi-trait animal model to estimate genetic parameters. The analysis included the residual and additive genetic random effects and the sex-hatch fixed effect. The additive effects of the SNP were associated with breast meat (BMY), liver yield (LIVY), body weight at 35 days of age (BW35); drumstick skin (DSW), drumstick (DW) and breast (BW) weights. The heritability estimates for these traits, in addition to BW42, ranged from 0.24 ± 0.06 to 0.45 ± 0.08 for LIVY and BW35, respectively. The genetic correlation ranged from 0.02 ± 0.18 for LIVY and BMY to 0.97 ± 0.01 for BW35 and BW42. Based on the results of this study, it can be concluded that ACTA1 gene is associated with performance traits BW35, LIV and BMY, DW, BW and DW adjusted for body weight at 42 days of age. Therefore, the ACTA1 gene is an important molecular marker that could be used together with others already described to increase the economically important traits in broilers.
Resumo:
Rapid growth in broilers is associated with susceptibility to metabolic disorders such as pulmonary hypertension syndrome (ascites) and sudden death. This study describes a genome search for QTL associated with relative weight of cardio respiratory and metabolically important organs (heart, lungs, liver and gizzard), and hematocrit value in a Brazilian broiler-layer cross. QTL with similar or different effects across sexes were investigated. At 42 days of age after fasted for 6 h, the F2 chickens were weighed and slaughtered. Weights and percentages of the weight relative to BW42 of gizzard, heart, lungs, liver and hematocrit were used in the QTL search. Parental, F1 and F2 individuals were genotyped with 128 genetic markers (127 microsatellites and 1 SNP) covering 22 linkage groups. QTL mapping analyses were carried out using mixed models. A total of 11 genome-wide significant QTL and five suggestive linkages were mapped. Thus, genome-wide significant QTL with similar effects across sexes were mapped to GGA2, 4 and 14 for heart weight, and to GGA2, 8 and 12 for gizzard %. Additionally, five genome-wide significant QTL with different effects across sexes were mapped to GGA 8, 19 and 26 for heart weight; GGA26 for heart % and GGA3 for hematocrit value. Five QTL were detected in chromosomal regions where QTL for similar traits were previously mapped in other F2 chicken populations. Seven novel genome-wide significant QTL are reported here, and 21 positional candidate genes in QTL regions were identified.
Resumo:
The diameters and areas of portal vein, caudal vena cava and abdominal aorta are useful measurements in dogs. These values can be easily measured by ultrasonographic exam, and variations of normality can be an important indicator of hepatic or extra-hepatic alterations. This study aimed to measure the diameter and areas of portal vein, caudal vena cava and abdominal aorta inhealthy dogs, with normal corporal score, divided in groups according to the body weight, and assess whether the data are influenced by animal weight. Thirty dogs were examined and divided into three groups (Group A: ≤ 10 kg Group B: from 10.1 to 20.0 kg; Group C: ≥ 20.1 kg). To measure thediameters and areas of portal vein, caudal vena cava and abdominal aorta, the animal was kept in left lateral decubitus position and the transducer was placed on the right lateral abdominal wall, at approximately the 10th or 11th intercostal space, in the porta hepatis region. The diameters and areas of the portal vein, caudal vena cava and abdominal aorta were significantly lower for dogs in Group A with respect to other groups and the dogs from Groups B and C had similar results with each other. The diameters and areas of the portal vein, caudal vena cava and abdominal aorta may vary with the animal size, and reference values must be specific for small, medium and large dogs. Key words: abdominal vessels; area; diameter; measurement; ultrasonographic exam