68 resultados para Yoneda Algebras
Resumo:
A simple description of the KP hierarchy and its multi-hamiltonian structure is given in terms of two Bose currents. A deformation scheme connecting various W-infinity algebras and the relation between two fundamental nonlinear structures are discussed. Properties of Faá di Bruno polynomials are extensively explored in this construction. Applications of our method are given for the Conformal Affine Toda model, WZNW models and discrete KP approach to Toda lattice chain.
Resumo:
Recently Lukierski et al. [1] defined a κ-deformed Poincaré algebra which is characterized by having the energy-momentum and angular momentum sub-algebras not deformed. Further Biedenharn et al. [2] showed that on gauging the κ-deformed electron with the electromagnetic field, one can set a limit on the allowed value of the deformation parameter ∈ ≡ 1/κ < 1 fm. We show that one gets Regge like angular excitations, J, of the mesons, non-strange and strange baryons, with a value of ∈ ∼ 0.082 fm and predict a flattening with J of the corresponding trajectories. The Regge fit improves on including deformation, particularly for the baryon spectrum.
Resumo:
Pós-graduação em Matemática em Rede Nacional - IBILCE
Resumo:
Pós-graduação em Física - IFT
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Pós-graduação em Física - IFT
Resumo:
Pós-graduação em Física - IFT