98 resultados para Weak magnetic fields


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Pós-graduação em Ciência dos Materiais - FEIS

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Magnetic fields can be produced by natural magnets, artificial magnets, and by circulating electric currents in wires and solenoids. An interesting experiment to observe the interaction between the magnetic field and free charges in a conductor, a magnet falling inside a tube made of conductive materials. The slowing down of the magnet by the appearance of a field in the opposite direction to the original one (Lenz's Law) is function the number of free electrons in the conductor and the electrical properties of this. Based on this, the objective of this study is to analyze the relationship between the electrical properties of conductors, copper and aluminum, with magnetic force on a neodymium magnet-iron-boron magnet falling inside a copper tube and aluminum, positioned vertically. In performing this experiment, we observed that it is a demonstration of Lenz-Faraday’s Law

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This work will discuss how magnetic fields can be produced, either generated by magnets, natural, artificial, or even by an electric current going through a wire, as discovered by Oersted. Besides the theoretical content, experimental studies on magnetic induction and on the Laws of Faraday and Lenz will be performed. In the Magnetic Induction experiment, the electromotive force generated by varying the flow of the field B in a solenoid, depending on the variation of the current intensity and frequency associated with it will be measured; the experiment on the Laws of Faraday and Lenz the electromotive force produced by the relative movement of the magnet in relation to a coil. Thus, this study experimental verification of magnetic induction using solenoids and magnets; analysis of magnetic induction by Faraday's Law and Lenz's Law

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Magnetic resonance imaging (MRI), which is studied since 1938, is a technique used in medicine to produce high quality images from inside the human body. These images are produced non-invasively and without ionizing radiation. In addition, MRI is an extremely flexible technique, with which it is possible to produce images with different contrasts that provide different information about the anatomy, structure and function of the human body, and it is therefore one of the techniques preferred by radiologists. The phenomenon of MRI is based on the interaction of magnetic fields with the nuclear spins of the scanned sample. In this work a detailed study of the technique of magnetic resonance imaging is presented, with a description of the main features of the images produced by the technique and an analysis of its application to the fields of applications Neurology and Neuroscience

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The gastrointestinal tract is the main route of nutrients absorption and drugs delivery. Is important to know the parameters related to the tract, like gastric emptying and gastrointestinal transit, in order to better understand the behavior of different kind of meals or drugs passing through the GIT. Many techniques are used to study these parameters, such as manometry, scintigraphy, phenol red, activated charcoal and carbon-13 reading. However, these methods use radiation, are invasive and require animal sacrifice. As an alternative proposal, the Alternate Current Biosusceptometry (ACB), a magnetic technique, has proved to be effective for these studies with small animals, in a noninvasive way, low cost, radiation free and avoiding the animal death. Associating the ACB to magnetic micro or nanoparticles used as tracers, it is possible to observe the meal behavior inside of the GIT. Focusing meanly on liquid meals digestion, this paper had the objective to evaluate the efficiency of the ACB technique in gastric emptying and gastrointestinal transit evaluation of liquid meals in rats. To perform the experiments, magnetic nanoparticles (ferrite, MgFe2O4) were used on a 1,5 ml solution introduced by gavage on similar weight and age rats. The sensor made by 2 pairs of coils, capable of generating and detecting magnetic fields, creates a field on the interest place and when this field is in contact with the marked meal, it changes, resulting on a variation of the measured voltage. The voltage variation is analyzed and is obtained a particle concentration on the interest region. The results showed that is possible to apply the ACB technique on the GIT evaluation of liquid particles digestion, gastric emptying and meal cecum arrival time curves were obtained and from that, is possible to observe a pattern of gastrointestinal transit. Both mean process time values were acquired, proving the technique capability of ...

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We present both analytical and numerical results on the position of partition function zeros on the complex magnetic field plane of the q=2 state (Ising) and the q=3 state Potts model defined on phi(3) Feynman diagrams (thin random graphs). Our analytic results are based on the ideas of destructive interference of coexisting phases and low temperature expansions. For the case of the Ising model, an argument based on a symmetry of the saddle point equations leads us to a nonperturbative proof that the Yang-Lee zeros are located on the unit circle, although no circle theorem is known in this case of random graphs. For the q=3 state Potts model, our perturbative results indicate that the Yang-Lee zeros lie outside the unit circle. Both analytic results are confirmed by finite lattice numerical calculations.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Pós-graduação em Biologia Geral e Aplicada - IBB

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Pós-graduação em Ciência e Tecnologia de Materiais - FC

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

40.00% 40.00%

Publicador:

Resumo:

A weak ferromagnetic phase is shown in pressed pellets of partially doped poly(3-methylthiophene) (P3MT) in the whole range from 1.8 to 300 K in magnetic measurements. Thermoremanence data have been used to estimate the suppression of this phase to be around 815 K. We also show that instead of the classical antiferromagnetism for the first-order interaction that gives weak ferromagnetism as a second-order effect, metamagnetic behavior is observed. X-band electron spin resonance (ESR) measurements and magnetization measurements allowed us to estimate that 8.1% of the total number of spins contributes to the weak ferromagnetism at room temperature. The doping level obtained from the ESR data is in good agreement with that estimated from electron dispersive spectroscopy measurements.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Recent studies have demonstrated that sheath dynamics in plasma immersion ion implantation (PIII) is significantly affected by an external magnetic field, especially in the case when the magnetic field is parallel to the workpiece surface or intersects it at small angles. In this work we report the results from two-dimensional, particle-in-cell (PIC) computer simulations of magnetic field enhanced plasma immersion implantation system at different bias voltages. The simulations begin with initial low-density nitrogen plasma, which extends with uniform density through a grounded cylindrical chamber. Negative bias voltage is applied to a cylindrical target located on the axis of the vacuum chamber. An axial magnetic field is created by a solenoid installed inside the target holder. A set of simulations at a fixed magnetic field of 0.0025 T at the target surface is performed. Secondary electron emission from the target subjected to ion bombardment is also included. It is found that the plasma density around the cylindrical target increases because of intense background gas ionization by the electrons drifting in the crossed E x B fields. Suppression of the sheath expansion and increase of the implantation current density in front of the high-density plasma region are observed. The effect of target bias on the sheath dynamics and implantation current of the magnetic field enhanced PIII is discussed. (C) 2007 Elsevier B.V. All rights reserved.