117 resultados para Ultrasound attenuation


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The hydrolysis of TMOS in oxalic acid catalyzed reacting TMOS-water mixtures, under ultrasound stimulation, was studied by fitting a simplified dissolution and reaction modeling for samples, the hydrolysis rate of which had been measured in a previous work. The reaction pathway represented in a ternary diagram shows a heterogeneous step for the reaction which gradually progresses until complete homogenization of the system. Besides the water dissolved due to the homogenizing effect of the alcohol, ultrasound maintains a virtual and additional dissolution of water located at the interface between the TMOS and water during the heterogeneous step of the reaction. The mean radius of the heterogeneity represented by water dispersed in TMOS was evaluated as around 150 Angstrom. The oxalic acid concentration accordingly increases the hydrolysis rate constant but its fundamental role on the solubility of water in TMOS could not unequivocally be established.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A kinetic study of the ultrasound-stimulated and acid-catalyzed sonohydrolysis of tetraethyl orthosilicate (TEOS) in solventless TEOS-water heterogeneous mixtures was carried out by means of a calorimetric method as a function of the ultrasound power. The hydrolysis reaction starts in acidulated heterogeneous water-TEOS mixtures after an induction period under ultrasonic stimulation. The ultrasound power seems to play a role on the dynamical coupling of the system originating a continuum upward shifting of the base line during the induction period of sonication. The rate in which the base line is upward shifted diminishes with the power. The best coupling between the ultrasound and the reactant heterogeneous mixtures for this experimental setup was found to occur at 50 W, for which the gelation time was found to be a minimum. The kinetics of the heterogeneous TEOS sonohydrolysis was studied on the basis of a dissolution and reaction modeling. The heterogeneous reaction pathway as deduced from the kinetic study was drawn in a ternary diagram as a function of the ultrasound power. (C) 2006 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Purpose: Ultrasound (US) therapy is an elect rot hermotherapeutic modality that uses US energy to provoke physical and chemical alterations. US therapy has been widely used in physical therapy. However in clinical practice, it is contra-indicated in cancer patients due to the possibility of exacerbating tumor growth.Methods: Sixty-eight female Sprague-Dawley rats bred in UNIFAE vivarium were studied. At 50 days of age, 7, 12-dimetylbenz(a)anthracene (7, 12-DMBA) was administered to 35 rats by gastric gavage to induce mammary cancer After 90 days the mammary glands of the rats belonging to the group with mammary cancer induction and stimulated by US were removed. Animals received either continuous or pulsed US. US waves were generated at a frequency of 1 MHz during 10 days, with an intensity dose of 0.5 W in the continuous group, and 0.9 W (duty cycle: 20%) in the pulsed group.Results: Among the rats treated with continuous US, 44.4% developed local recurrence, while among the rats treated with pulsed US, 22.2% had local tumor recurrence (p < 0.05). No evidence of distant metastases was shown in any of the rats studied.Conclusion: The use ofcontinuous and pulsed therapeutic US promoted the development of local recurrence of mammary cancer in female Sprague-Dawley rats in the postoperative period.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The acid catalyzed and ultrasound stimulated hydrolysis of solventless tetraethoxysilane-water mixtures was studied at 39°C as a function of HCl added to the mixtures (log[HCl]-1 ranged from 0.8 to 2.0), The reaction was carried out in a specially designed device, in which a steady state heat flow is maintained, while sonication is taking place, if no reaction is expected to occur. The exothermal hydrolysis reaction causes an increasing temperature (ΔTt) as a function of the reaction time, t. The isothermal hydrolysis rate constant, k, has been evaluated from the experimental ΔTt versus t data, after corrections for the increasing temperature effects, by using a method resulting from our theoretical modeling based on a dissolution and reaction mechanism. The hydrolysis rate constant fits closely a k α [H+] law as expected for this kind of hydrogen-ion catalyzed reaction.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Temporal and spatial acoustic intensity (SATA) of therapeutic ultrasound (US) equipment should be monitored periodically. In order to evaluate the conditions of US equipment in use in the city of Piracicaba-Sao Paulo, Brazil, 31 machines - representing all Brazilian manufacturers - were analysed under continuous and pulsed conditions at a frequency of 1 MHz. Data about temporal and spatial acoustic intensity were collected and the use of equipment was surveyed. Intensities of 0.1, 0.2, 0.5, 0.8, 1.0, 1.5, 2.0, 2.5 and 3.0 Wcm -2, indicated on the equipment panel were analysed using a previously calibrated digital radiation pressure scale, model UPM-DT-1 (Ohmic Instruments Co). The acoustic intensity (I) results were expressed as superior and inferior quartile ranges for transducers with metal surfaces of 9 cm 2 and an effective radiation area (ERA) Of 4 cm 2. The results under continuous conditions were: I 0.1 = -20.0% and -96%. I 0.2 = -3.1% and -83.7%. I 0.5 = -35.0% and -86.5%. I 0.8 = -37.5% and -71.0%. I 2.5 = -49.0% and -69.5%. I 3.0 = -58.1% and -77.6%. For pulsed conditions, intensities were: I 0.1 = -40.0% and -86.2%. I 1.0 = -50.0% and -86.5%. I 1.5 = -62.5% and -82.5%. I 2.0 = -62.5% and -81.6%. I 2.5 = -64.7% and -88.8%. I 3.0 = -87.1% and -94.8%. In reply to the questionnaire drawn up to check the conditions of use of equipment, all users reported the use of hydrosoluble gel as a coupling medium and none had carried out previous calibrations. Most users used intensities in the range of 0.4. to 1.0 Wcm -2 and used machines for 300 to 400 minutes per week. The majority of machines had been bought during the previous seven years and weekly use ranged from less than 100 minutes to 700 minutes (11 hours 40 minutes). Findings confirm previous observations of discrepancy between the intensity indicated on the equipment panel and that emitted by the transducer and highlight the necessity for periodic evaluations of US equipment.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Structural changes induced by ultrasound during the aging of the aluminum monohydroxide (boehmite) were studied by means of X-ray diffraction (XRD) and nitrogen adsorption. The BET surface area and the pore volume of the ultrasound stimulated hydroxide (HU) are about 40% less than those of the non-stimulated one (HS). The mean pore size practically does not change, while the mean crystallite size (L) is about 25% greater in the HU system. The increase of L alone is not enough to account for the surface area diminution, suggesting that the sonication also induces compaction by elimination of some porosity. The sonication of the precursor hydroxide does not seem to play an apparent role in the structural properties of the resulting calcinated γ-alumina. © 1997 Elsevier Science B.V.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background: Splanchnic artery occlusion shock is caused by increased capillary permeability and cellular injury precipitated by oxygen derived free radicals following ischemia and reperfusion of splanchnic organs. The purpose of this study was to assess the role of several well-known oxygen- derived free radical scavengers in ameliorating or preventing this syndrome. Study design: Anesthetized rats were subjected to periods of occlusion of the visceral arteries and reperfusion. Tocopherol, taurine, selenium or a 'cocktail' of these three agents was injected subcutaneously for 4 consecutive days prior to operation. Mean arterial blood pressure was measured throughout the experimental period. Fluorometry and technetium-99m pyrophosphate counting of the visceral organs were performed as well as a histologic grading system for intestinal viability. Results: Final mean arterial blood pressure associated with the 'cocktail' and selenium groups was 79.1 ± 27.4 mmHg and 83.6 ± 17.8 mmHg, respectively. These values were significantly higher than the control group, 40.8 ± 11.4 mmHg (P < 0.05). Similar patterns of the benefit of selenium in contrast with the other groups were obtained with fluorescein perfusion, radioisotopic activity and histologic analysis. Conclusion: Pretreatment with selenium of splanchnic ischemia and reperfusion in the rat improves mean arterial blood pressure and microcirculatory visceral perfusion. Further analysis of the precise protective mechanism of selenium for reperfusion injury will enable visceral organs to withstand the consequences of increased capillary leakage and oxidant injury.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Diphasic gel in the mullite composition was prepared from a colloidal sol of boehmite mixed with a hydrolyzed tetraethoxisilane (TEOS) solution. The boehmite sol was obtained by peptization of a poorly crystallized or very small mean crystallite size (∼34 Å) precipitate, resulting from the reaction between solutions of aluminum sulfate and sodium hydroxide. Ultrasound was utilized in the processes of the TEOS hydrolysis and the boehmite peptization, and also for complete homogenization of the mixture to gel. The wet gel is almost clear and monolithic. The gel transparency is lost on drying, when syneresis has ended, so that the interlinked pore structure starts to empty and is recovered upon water re-absorption. Cracking closely accompanies this critical drying process. Differential thermal analysis (DTA) and X-ray diffraction (XRD) show that the solid structure of the gel is composed of an amorphous silica phase, as a matrix, and a colloidal sized crystalline phase of boehmite. Upon heat treatment, the boehmite phase within the gel closely follows the same transition sequence as in pure alumina shifted towards higher temperatures. Orthorhombic mullite formation was detected at 1300°C. © 1998 Elsevier Science B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The objective of this study was to investigate the effects of ultrasound treatment and physical exercise on the velocity of bone consolidation and resistance to deformation. We performed osteotomy in the upper third of the right tibia of rats. Physical training consisted of swimming 1 h per day with a load of 5% b.w. for 30 days. Therapy with medium-intensity ultrasound was applied daily on the damaged area. Wistar rats were divided into the following groups: osteotomized sedentary animals with no ultrasound treatment (1.OSnUS), osteotomized trained animals with no ultrasound treatment (2.OTnUS), osteotomized sedentary animals with ultrasound treatment (3.OSwUS). and osteotomized trained animals with ultrasound treatment (4.OTwUS). The animals were sacrificed for the following analyses: muscle glycogen, serum alkaline phosphatase at the 5th, 10th, 20th, and 30th days, test of maximum resistance to flexion, rupture flexion and mean tibial rigidity at the 30th day. Muscle glycogen was increased at the 20th day: alkaline phosphatase was elevated at the 5th and 20th days in groups 3.OSwUS and 4.OTwUS. and decreased at the 10th day. Groups1.OSnUS and 2.OTnUS did not show significant variations. In the mechanical resistance tests, we noted that ultrasound therapy and the association of physical activity used in the present study showed significant differences in bone resistance and bone rigidity after 30 days of treatment. These facts suggest that ultrasound or physical activity, or their combination may accelerate the process of bone tissue repair.