64 resultados para ULTRASTRUCTURAL CHANGES
Resumo:
The purpose of this study was to investigate if experimental alloxanic diabetes could cause qualitative changes in intestinal anastomoses of the terminal ileum and distal colon in rats, as compared to controls. 192 male Wistar rats, weighing ± 300g were split into four experimental groups of 48 animals each, after 3 months of follow-up: a control group with ileum anastomoses (G1), a control group with colon anastomoses (G2), a diabetic group with ileum anastomoses (G3) and a diabetic group with colon anastomoses (G4). Animals were evaluated and sacrificed on days 4, 14, 21 and 30 after surgery, and fragments of the small and large intestine where the anastomoses were performed were removed. Samples from 6 animals from each sacrifice moment were submitted to ultrastructural analysis of the collagen fibers using a scanning electron microscope and samples from another 6 animals were submitted to histopathology and optical microscopy studies using picrosirius red-staining. Histopathological analysis of picrosirius red-stained anastomosis slides using an optical microscope at 40x magnification showed that the distribution of collagen fibers was disarranged and also revealed a delay in scar tissue retraction. The morphometric study revealed differences in the collagen filled area for the ileum anastomoses 14 days post surgery whereas, in the case of colon anastomoses, differences were observed at days 4 and 30 post surgery, with higher values in the diabetic animals. Ultrastructure analysis of the ileum and colon anastomoses using a scanning electron microscope revealed fewer wide collagen fibers, the presence of narrower fibers and a disarranged distribution of the collagen fibers. We conclude that diabetes caused qualitative changes in scar tissue as well as in the structural arrangement of collagen fibers, what could explain the reduced wound strength in the anastomosis of diabetic animals. © J. A. Barth Verlag in Georg Thieme Verlag KG Stuttgart.
Resumo:
Alterations in liver functions are common among diabetic patients, and many symptoms in the liver have been reported, including changes in glycogen stores and in the amount of collagen fibers. The practice of physical training and its morphological effects in this organ, however, are scarcely studied. In order to observe the morphological effects of alloxan-induced diabetes and the alterations arising from the practice of long-term chronic physical training in the liver, samples were collected and processed, and then analyzed by means of the histochemical techniques Periodic Acid-Schiff and Picrosirius-Hematoxylin, and ultrastructural cytochemical test of Afzelius. Through evaluation of the tissue, it was observed a drastic reduction in hepatic glycogen stores of sedentary diabetics, recovered in trained diabetic rats. Furthermore, it was detected a decrease in the content of perisinusoidal collagen fibers in the diabetic liver, also recovered due to the development of a training protocol. On ultrastructural level, cytochemical analysis confirmed the loss of glycogen and the recovery obtained by training. In conclusion, the practice of a long-term chronic physical training protocol may be considered an important assistant in the treatment of diabetes, mitigating the occurrence of possible damages to liver tissue. © 2011 Elsevier Ltd.
Resumo:
Myotis nigricans is an endemic species of vespertilionid bat, from the Neotropical region, that resembles temperate zone bats in their reproductive cycle; presenting an annual reproductive cycle with two periods of testicular regression, which are not linked to the apoptotic process and seems to be not directly linked to any seasonal abiotic variation. Thus, this study aimed to ultrastructurally evaluate their reproductive cycle. The process of testicular regression could be divided into four periods: active; regressing; regressed and recrudescence; with all presenting distinct characteristics. The active period was similar to that of other bats, presenting the complete occurrence of spermatogenesis, with three main types of spermatogonia (Ad, Ap, and B) and 12 steps in spermatid differentiation; however, it differed in having the outer dense fibers 1, 5, 6, and 9 larger than the others. These three types of spermatogonia undergo considerable morphologic changes from regressing to the regressed period, and in the recrudescence, they return to the basic morphology, which reactivates spermatogenesis. In conclusion, our study described the process of spermatogenesis, the ultrastructure of the spermatozoa and the distinct morphologic variations in the ultrastructure of the testicular cells of M. nigricans during the four different periods of its annual reproductive cycle. Microsc. Res. Tech., 76:1035-1049, 2013. © 2013 Wiley Periodicals, Inc.
Resumo:
Chromatoid body (CB) is a typical cytoplasmic organelle of germ cells, and it seems to be involved in RNA/protein accumulation for later germ-cell differentiation. Despite most of the events in mammals spermatogenesis had been widely described in the past decades and the increase in the studies related to the CB molecular composition and physiology, the origins and functions of this important structure of male germ cells are still unclear. The aims of this study were to describe the nucleolar cycle and also to find some relationship between the nucleolar organization and the CB assembling during the spermatogenesis in mammals. Cytochemical and cytogenetics analysis showed nucleolar fragmentation in post-pachytene spermatocytes and nucleolar reorganization in post-meiotic spermatids. Significant difference in the number and in the size of nucleoli between spermatogonia and round spermatids, as well as differences in the nucleolar position within the nucleus were also observed. Ultrastructural analysis showed the CB assembling in the cytoplasm of primary spermatocytes and the nucleolar fragmentation occurring at the same time. In conclusion our results suggest that the CB may play important roles during the spermatogenesis process in mammals and that its origin may be related to the nucleolar cycle during the meiotic cell cycle.