65 resultados para Tropical tree
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Ecological processes in tropical forests are being affected at unprecedented rates by human activities. Yet, the continuity of ecological functions like seed dispersal is crucial for forest regeneration. It thus becomes increasingly urgent to be able to rapidly assess the health status of these processes in order to take appropriate management measures. We tested a method to rapidly evaluate seed removal rates on two animal-dispersed tree species, Virola kwatae and V.michelii (Myristicaceae), at three sites in French Guiana with increasing levels of anthropogenic disturbance. We counted fallen fruits, fruit valves, and seeds of each focal fruiting tree in a single 1m2 quadrat, and calculated two indices: the proportion of seeds removed and the proportion of fruits opened by mammals. They both provide an indirect and rapid assessment of frugivore activity. Our results showed a significant decrease in the proportion of removed seeds (16%) and fruits opened (19%) at the most impacted site in comparison with the other two sites (79% for seeds, 60% and 35% for fruits). This testifies to an increased impoverishment of the primate and toucan communities at the disturbed sites. This standardized protocol provides fast information about the health status of the community of seed dispersers and predators and of their seed removal services. It is time- and cost-effective and is not species-specific, allowing comparisons among sites or over time. We suggest using it with the pantropical Myristicaceae and any other capsule-producing family to rapidly assess the health status of seed removal processes across the tropics.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
All trees with diameter at breast height dbh >= 10.0 cm were stem-mapped in a "terra firme" tropical rainforest in the Brazilian Amazon, at the EMBRAPA Experimental Site, Manaus, Brazil. Specifically, the relationships of tree species with soil properties were determined by using canonical correspondence analyses based on nine soil variables and 68 tree species. From the canonical correspondence analyses, the species were grouped into two groups: one where species occur mainly in sandy sites, presenting low organic matter content; and another one where species occur mainly in dry and clayey sites. Hence, we used Ripley's K function to analyze the distribution of species in 32 plots ranging from 2,500 m(2) to 20,000 m(2) to determine whether each group presents some spatial aggregation as a soil variations result. Significant spatial aggregation for the two groups was found only at over 10,000 m(2) sampling units, particularly for those species found in clayey soils and drier environments, where the sampling units investigated seemed to meet the species requirements. Soil variables, mediated by topographic positions had influenced species spatial aggregation, mainly in an intermediate to large distances varied range (>= 20 m). Based on our findings, we conclude that environmental heterogeneity and 10,000 m(2) minimum sample unit sizes should be considered in forest dynamic studies in order to understand the spatial processes structuring the "terra firme" tropical rainforest in Brazilian Amazon.