92 resultados para Triticum turgisecale
Resumo:
Besides increasing productivity, nitrogen fertilization may have positives effects on seed physiological quality. The objective of this study was to evaluate the effect of different forms and levels of urea in top dressing fertilization on the physiological quality of wheat seed genotypes. Seeds of three wheat genotypes (BRS 208, BRS Pardela and IWT 04008) were evaluated for four levels of nitrogen fertilization (0, 40, 80 and 120 kg.ha-1) in three forms of urea (conventional urea, urea with urease inhibitor and protected urea). The nitrogen fertilization was applied during tillering, 20 days after emergence. The seed nitrogen content, 1000 seed mass, germination and vigor (germination first count, cold test, seedling emergence in the field, dry weight of seedlings, accelerated aging and electrical conductivity) were evaluated. The IWT 04008 line and the cultivar BRS Pardela had seeds with a higher physiological quality than those of the cultivar BRS 208. The forms of urea and levels of nitrogen in topdressing did not affect seed physiological quality of the different wheat genotypes.
Resumo:
The fungicide can enhance response of nitrogen fertilization on wheat crop, since the application of higher N rates can provide better conditions for the development of some diseases. The present study investigated the effects of different nitrogen doses and fungicide application in preventive character on the yield of two cultivars of wheat irrigated, in Savannah conditions. The experiment was conducted in Selvíria - MS, in a Distrophic Red Latosol (Typic Haplustox). Treatments were arranged in a randomized block design, in a 4x2x2 factorial scheme: four N rates (0, 60, 120 and 180 kg ha-1), topdressing at the early boot stage as urea, two wheat cultivars (IAC 24 and IAC 370), and with and without fungicide application (Tebuconazole and Triciclazol), with four replications. The cultivars IAC 24 and IAC 370 present similar grain yield. The increase of N doses influences the mass hectoliter negatively and the leaf N content and number of ears per m2 positively. The increment of N doses increase the grain yield up to dose of 116 kg ha -1 of N, regardless of cultivar and of the fungicide application in preventive character, due to non occurrence of diseases in the experiment.
Resumo:
Fermentable carbohydrates are an important part of the canine diet. They can improve gastrointestinal health by modifying gut microbial population and metabolic activity. The present study compared the fermentation characteristics and kinetic patterns of 10 carbohydrate sources using the in vitro gas production technique (IVGPT) with dog faecal inoculum. The substrates tested were: pure cellulose (PC), carboxymethylcellulose (CMC), sugar-cane fibre (SCF), beet pulp (BP), wheat bran (WB), fructooligosaccharides (FOS), inulin, yeast cell wall (YCW), ground psyllium seed (PS), pea hulls (PH). All substrates were incubated at 39°C under anaerobic conditions with faeces collected from dogs as microbial inoculum. Gas production of fermenting cultures was recorded and after 48 h, pH, shortchain fatty acids (SCFA) and organic matter disappearance (OMD) were determined. The results confirm high fermentation by dog faecal bacteria of FOS and inulin that produced high amounts of propionate and that underwent very rapid fermentation. Three substrates (SCF, CMC and PC) were not able to support bacterial growth, with low gas and SCFA production, and high BCFA formation. The PH and BP showed moderate OMD and SCFA production. Wheat bran B underwent rapid fermentation and generated a high proportion of butyrate. Psyllium seeds underwent slow fermentation with delayed gas production, supporting a high formation of SCFA, with an adequate amount of butyrate for bacterial growth while YCW, which showed a delayed fermentation, gave moderate SCFA production. The fermentation characteristics of PS and YCW suggest their potential use in promoting a more distal fermentation on intestinal tract. © Copyright S. Calabrò et al., 2013 Licensee PAGEPress, Italy.
Resumo:
Tillers survival and yield potential are genetically determined and strongly influenced by environmental conditions during the emission and establishment stage. This experiment was carried in order to study effects of application of growth regulator (Ax+GA+CK) on tiller survival and yield potential of wheat. The experiment was carried out from March to July 2010. A 2 × 2 factorial randomized block design with five replications was used. Two wheat cultivars (IAC 370 and IAC 375) and application or not of Ax+GA+CK at the beginning of tillering stage were evaluated. Tiller emission were evaluated at five ages (19, 26, 33, 40 e 47 days after emergence) and yield components were determined by each individual structure evaluation, comparing to the main stem. Growth regulator application improved the tiller survival when emitted in the first week after application. Tiller yield potential decreased in late emission periods of tillers in both cultivars tested, influenced by different traits of each cultivar. IAC 370 showed higher tiller emission, however, the number of viable tillers were higher for the IAC 375.
Resumo:
Currently, there is worldwide interest in the technological use of agro-industrial residues as a renewable source of food and biofuels. Lignocellulosic materials (LCMs) are a rich source of cellulose and hemicellulose. Hemicellulose is rich in xylan, a polysaccharide used to develop technology for producing alcohol, xylose, xylitol and xylo-oligosaccharides (XOSs). The XOSs are unusual oligosaccharides whose main constituent is xylose linked by β 1-4 bonds. The XOS applications described in this paper highlight that they are considered soluble dietary fibers that have prebiotic activity, favoring the improvement of bowel functions and immune function and having antimicrobial and other health benefits. These effects open a new perspective on potential applications for animal production and human consumption. The raw materials that are rich in hemicellulose include sugar cane bagasse, corncobs, rice husks, olive pits, barley straw, tobacco stalk, cotton stalk, sunflower stalk and wheat straw. The XOS-yielding treatments that have been studied include acid hydrolysis, alkaline hydrolysis, auto-hydrolysis and enzymatic hydrolysis, but the breaking of bonds present in these compounds is relatively difficult and costly, thus limiting the production of XOS. To obviate this limitation, a thorough evaluation of the most convenient methods and the opportunities for innovation in this area is needed. Another challenge is the screening and taxonomy of microorganisms that produce the xylanolytic complex and enzymes and reaction mechanisms involved. Among the standing out microorganisms involved in lignocellulose degradation are Trichoderma harzianum, Cellulosimicrobium cellulans, Penicillium janczewskii, Penicillium echinulatu, Trichoderma reesei and Aspergillus awamori. The enzyme complex predominantly comprises endoxylanase and enzymes that remove hemicellulose side groups such as the acetyl group. The complex has low β-xylosidase activities because β-xylosidase stimulates the production of xylose instead of XOS; xylose, in turn, inhibits the enzymes that produce XOS. The enzymatic conversion of xylan in XOS is the preferred route for the food industries because of problems associated with chemical technologies (e.g., acid hydrolysis) due to the release of toxic and undesired products, such as furfural. The improvement of the bioprocess for XOS production and its benefits for several applications are discussed in this study. © 2012 Elsevier Ltd.
Resumo:
Previous studies in rodents treated with the pro-carcinogen 1,2-dimethylhydrazine suggested that the consumption of wheat bran protected against DNA damage in the colon and rectum. Based on this information, we evaluated wheat bran as a functional food in the prevention and treatment of colon cancer. We used the aberrant crypt focus assay to evaluate the anticarcinogenic potential of wheat bran (Triticum aestivum variety CD-104), the comet assay to evaluate its antigenotoxicity potential, and the micronucleus assay to evaluate its antimutagenic potential. The wheat bran gave good antimutagenic and anticarcinogenic responses; the DNA damage decreased from 90.30 to 26.37% and from 63.35 to 28.73%, respectively. However, the wheat bran did not significantly reduce genotoxicity. Further tests will be necessary, including tests in human beings, before this functional food can be recommended as an adjunct in the prevention and treatment of colon cancer. © FUNPEC-RP.
Resumo:
The structural polysaccharides contained in plant cell walls have been pointed to as a promising renewable alternative to petroleum and natural gas. Ferulic acid is a ubiquitous component of plant polysaccharides, which is found in either monomeric or dimeric forms and is covalently linked to arabinosyl residues. Ferulic acid has several commercial applications in food and pharmaceutical industries. The study herein introduces a novel feruloyl esterase from Aspergillus clavatus (AcFAE). Along with a comprehensive functional and biophysical characterization, the low-resolution structure of this enzyme was also determined by small-angle X-ray scattering. In addition, we described the production of phenolic compounds with antioxidant capacity from wheat arabinoxylan and sugarcane bagasse using AcFAE. The ability to specifically cleave ester linkages in hemicellulose is useful in several biotechnological applications, including improved accessibility to lignocellulosic enzymes for biofuel production. © 2012 Springer-Verlag Berlin Heidelberg.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Pós-graduação em Agronomia (Agricultura) - FCA
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Pós-graduação em Agronomia - FEIS
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Pós-graduação em Agronomia (Energia na Agricultura) - FCA